【題目】是雙曲線的兩個焦點, 在雙曲線上。已知的三邊長成等差數(shù)列,且,則該雙曲線的離心率為

【答案】

【解析】試題由題意,可根據(jù)雙曲線的定義及題設中三邊長度成等差數(shù)列把三個邊長都用a,c表示出來,再結(jié)合余弦定理即可得到結(jié)論.

由題,不妨令點C在右支上,則有

AC=2a+x,BC=x,AB=2c;

∵△ABC的三邊長成等差數(shù)列,且∠ACB=120°,

∴x+2c=2(2a+x)x=2c﹣4a;

AC=2a+x=2c﹣2a;

∵AB2=AC2+BC2﹣2ACBCcos∠ACB;

(2c)2=(2c﹣4a)2+(2c﹣2a)2﹣2(2c﹣4a)(2c﹣2a)(﹣);

∴2c2﹣9ac+7a2=02e2﹣9e+7=0;

e=,e=1(舍).

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,底面是矩形,平面,的中點,,.

1)求異面直線AECD所成角的大小;

2)求二面角EADB大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在傳染病學中,通常把從致病刺激物侵入機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應或開始呈現(xiàn)該疾病對應的相關癥狀時止的這一階段稱為潛伏期.一研究團隊統(tǒng)計了某地區(qū)100名患者的相關信息,得到如下表格:

潛伏期(單位:天)

人數(shù)

85

205

310

250

130

15

5

1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認為潛伏期與患者年齡有關;

潛伏期

潛伏期

總計

50歲以上(含50歲)

100

50歲以下

55

總計

200

附:

0.05

0.025

0.010

3.841

5.024

6.635

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求曲線在點處的切線方程;

(2)當時,若曲線在直線的上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)滿足,若恒成立,則實數(shù)的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知焦點在x軸上,離心率為的橢圓E的左頂點為A,點A到右準線的距離為6

1)求橢圓E的標準方程;

2)過點A且斜率為的直線與橢圓E交于點B,過點B與右焦點F的直線交橢圓EM點,求M點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

1)函數(shù)處的切線與直線垂直,求實數(shù)a的值;

2)若函數(shù)在定義域上有兩個極值點,,且

①求實數(shù)a的取值范圍;

②求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017高考新課標Ⅲ19)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBD,AB=BD.

(1)證明:平面ACD⊥平面ABC

(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查某地區(qū)70歲以上老人是否需要志愿者提供幫助,用簡單隨機抽樣的方法從該地區(qū)調(diào)查了100位70歲以上老人,結(jié)果如下:

需要

18

5

不需要

32

45

(1)估計該地區(qū)70歲以上老人中,男、女需要志愿者提供幫助的比例各是多少?

(2)能否有的把握認為該地區(qū)70歲以上的老人是否需要志愿者提供幫助與性別有關;

(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)70歲以上老人中,需要志愿者提供幫助的老人的比例?說明理由.

附:

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

,.

查看答案和解析>>

同步練習冊答案