【題目】已知命題p:x∈(-2,1),使等式x2-x-m=0成立,命題q:表示橢圓.
(1)若命題p為真命題,求實數(shù)m的取值范圍.
(2)判斷命題p為真命題是命題q為真命題的什么條件(請用簡要過程說明是“充分不必要條件”、“必要不充分條件”、“充要條件”和“既不充分也不必要條件”中的哪一個)
【答案】(1){m|≤m<6}(2)p是q的必要不充分條件
【解析】
(1)把:x∈(-2,1),使等式x2-x-m=0成立轉(zhuǎn)化為方程x2-x-m=0在(-2,1)上有解,即m的取值范圍就是函數(shù)y=x2-x在(-2,1)上的值域,再求二次函數(shù)的值域得答案;
(2)由表示橢圓求得m的范圍,利用集合間的關(guān)系結(jié)合充分必要條件的判定得答案.
解:(1)由題意,方程x2-x-m=0在(-2,1)上有解,
即m的取值范圍就是函數(shù)y=x2-x在(-2,1)上的值域,
函數(shù)y=x2-x的對稱軸方程為x=,
則當x=時,有最小值為,
當x=-2時,有最大值為6.
可得{m|≤m<6};
(2)∵命題q:表示橢圓為真命題,
∴,解得2<m<3或3<m<4.
故有{m|≤m<6}{m|2<m<3或3<m<4}.
∴p是q的必要不充分條件.
科目:高中數(shù)學 來源: 題型:
【題目】試證明:集合滿足
(1)對每個及,若,則一定不是的倍數(shù);
(2)對每個(表示在中的補集),且,必存在,,使是的倍數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:
①y=f(x)的表達式可改寫為y=4cos(2x﹣);
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點對稱;
④y=f(x)的圖象關(guān)于直線x=﹣對稱.
其中正確的命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為創(chuàng)建全國衛(wèi)生城市,引入某公司的智能垃圾處理設(shè)備.已知每臺設(shè)備每月固定維護成本萬元,每處理一萬噸垃圾需增加萬元維護費用,每月處理垃圾帶來的總收益萬元與每月垃圾處理量(萬噸)滿足關(guān)系:(注:總收益=總成本+利潤)
(1)寫出每臺設(shè)備每月處理垃圾獲得的利潤關(guān)于每月垃圾處理量的函數(shù)關(guān)系;
(2)該市計劃引入臺這種設(shè)備,當每臺每月垃圾處理量為何值時,所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件需另投人成本萬元.當年產(chǎn)量不足80千件時,(萬元);當年產(chǎn)量不小于80千件時,萬元,每千件產(chǎn)品的售價為50萬元,該廠生產(chǎn)的產(chǎn)品能全部售完.
(1)寫出年利潤萬元關(guān)于千件的函數(shù)關(guān)系式;
(2)當年產(chǎn)量為多少千件時該廠當年的利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在幾何體P﹣ABCD中,平面ABCD⊥平面PAB ,四邊形ABCD為矩形,△PAB為正三角形,若AB=2,AD=1,E,F(xiàn) 分別為AC,BP中點.
(1)求證:EF∥平面PCD;
(2)求直線DP與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求實數(shù)的取值范圍;
(2)已知函數(shù),且,若函數(shù)在區(qū)間上恰有3個零點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com