如圖,在四棱錐中,側(cè)棱底面,底面為矩形,上一點(diǎn),,

(I)若的中點(diǎn),求證平面;
(II)求三棱錐的體積.

(I)詳見解析;(II)三棱錐的體積為.

解析試題分析:(I)要證線面平行,先構(gòu)造面外線平行于面內(nèi)線;(II)求三棱錐的體積關(guān)鍵是選擇適當(dāng)?shù)牡酌,以便于求高為?biāo)準(zhǔn),為此要先考察線面垂直.
試題解析:(I)若的中點(diǎn), 上一點(diǎn),,故,都是線段的三等分點(diǎn).
設(shè)的交點(diǎn)為,由于底面為矩形,則的中位線,故有,而平面,平面內(nèi),故平面
(II)由于側(cè)棱底面,且為矩形,故有,,,故平面,又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/69/2/1fvbc3.png" style="vertical-align:middle;" />,,所以三棱錐的體積
考點(diǎn):直線與平面平行的判定、直線與平面垂直的判定、三棱錐的體積公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在圓錐PO中, PO=,?O的直徑AB=2, C為弧AB的中點(diǎn),D為AC的中點(diǎn).

(1)求證:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面為菱形,其中,,的中點(diǎn).

(1) 求證:;
(2) 若平面平面,且的中點(diǎn),求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱中,側(cè)棱底面,,,

(1)證明:平面;
(2)若是棱的中點(diǎn),在棱上是否存在一點(diǎn),使平面?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐的底面為平行四邊形,平面中點(diǎn).

(1)求證:平面;
(2)若,求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,菱形的邊長(zhǎng)為4,,.將菱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),.

(1)求證:平面;
(2)求證:平面平面
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直三棱柱中,AB=BC,,Q是AC上的點(diǎn),AB1//平面BC1Q.

(Ⅰ)確定點(diǎn)Q在AC上的位置;
(Ⅱ)若QC1與平面BB1C1C所成角的正弦值為,求二面角Q-BC1—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,六棱錐的底面是邊長(zhǎng)為1的正六邊形,底面。
(Ⅰ)求證:平面平面;
(Ⅱ)若直線PC與平面PDE所成角的正弦值為,求六棱錐高的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是直角梯形,,⊥平面SAD,點(diǎn)的中點(diǎn),且,.

(1)求四棱錐的體積;
(2)求證:∥平面
(3)求直線和平面所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案