設(shè)α∈(0,
π
2
),若sinα=
3
5
,則
2
cos(α+
π
4
)=
 
分析:由α∈(0,
π
2
),若sinα=
3
5
,根據(jù)同角三角函數(shù)的基本關(guān)系求出cosα的值,然后把所求的式子利用兩角和的余弦函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn)后,將sinα和cosα的值代入即可求出值.
解答:解:由α∈(0,
π
2
),若sinα=
3
5
,得到cosα=
1-(
3
5
)
2
=
4
5
,
2
cos(α+
π
4
)=
2
2
2
cosα-
2
2
sinα)=
4
5
-
3
5
=
1
5

故答案為:
1
5
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用同角三角函數(shù)間的基本關(guān)系及兩角差的余弦函數(shù)公式化簡(jiǎn)求值,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
-cos2(x+
π
4
)+sin(x+
π
4
)cos(x+
π
4
)

(I)求函數(shù)f(x)的最大值和周期;
(II)設(shè)角α∈(0,2π),f(α)=
2
2
,求α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)M到定點(diǎn)F1(-2,0)和F2(2,0)的距離之和為4
2

(I)求動(dòng)點(diǎn)M軌跡C的方程;
(II)設(shè)N(0,2),過(guò)點(diǎn)P(-1,-2)作直線(xiàn)l,交橢圓C異于N的A、B兩點(diǎn),直線(xiàn)NA、NB的斜率分別為k1、k2,證明:kl+k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x∈(0,
π
2
),則下列所有正確結(jié)論的序號(hào)為
②⑥
②⑥

①sinx
2
π
x;②sinx
2
π
x;③sinx
3
π
x;④sinx
3
π
x;⑤sinx
4
π2
x2; ⑥sinx
4
π2
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對(duì)稱(chēng)軸之間的距離為
π
2
,
(1)求函數(shù)f(x)的解析式和當(dāng)x∈[0,π]時(shí)f(x)的單調(diào)減區(qū)間;
(2)設(shè)a∈(0,
π
2
),則f(
a
2
)=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)已知點(diǎn)A(2,0),B(0,-2),F(xiàn)(-2,0),設(shè)∠AOC=α,α∈[0,2π),其中O為坐標(biāo)原點(diǎn).
(Ⅰ)設(shè)點(diǎn)C到線(xiàn)段AF所在直線(xiàn)的距離為
3
,且∠AFC=
π
3
,求α和線(xiàn)段AC的大小;
(Ⅱ)設(shè)點(diǎn)D為線(xiàn)段OA的中點(diǎn),若|
OC
|=2
,且點(diǎn)C在第二象限內(nèi),求M=(
3
DC
OB
+
BC
OA
)cosα的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案