【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c.已知a>b,a=5,c=6,sinB=
(Ⅰ)求b和sinA的值;
(Ⅱ)求sin(2A+ )的值.

【答案】解:(Ⅰ)在△ABC中,∵a>b,
故由sinB= ,可得cosB=
由已知及余弦定理,有 =13,
∴b=
由正弦定理 ,得sinA=
∴b= ,sinA= ;
(Ⅱ)由(Ⅰ)及a<c,得cosA= ,∴sin2A=2sinAcosA=
cos2A=1﹣2sin2A=﹣
故sin(2A+ )= =
【解析】(Ⅰ)由已知結合同角三角函數(shù)基本關系式求得cosB,再由余弦定理求得b,利用正弦定理求得sinA;
(Ⅱ)由同角三角函數(shù)基本關系式求得cosA,再由倍角公式求得sin2A,cos2A,展開兩角和的正弦得答案.
【考點精析】本題主要考查了兩角和與差的正弦公式和正弦定理的定義的相關知識點,需要掌握兩角和與差的正弦公式:;正弦定理:才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求曲線處的切線方程;

(Ⅱ)設,證明:對任意,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】米勒問題,是指德國數(shù)學家米勒1471年向諾德爾教授提出的有趣問題:在地球表面的什么部位,一根垂直的懸桿呈現(xiàn)最長(即可見角最大?)米勒問題的數(shù)學模型如下:如圖,設 是銳角的一邊上的兩定點,點是邊邊上的一動點,則當且僅當的外接圓與邊相切時,最大.若,點軸上,則當最大時,點的坐標為( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)利用五點法畫出函數(shù)在一個周期上的簡圖;

(2)先把的圖象上所有點向左平移個單位長度,得到的圖象;然后把的圖

象上所有點的橫坐標伸長到原來的2(縱坐標不變),得到的圖象;再把的圖象

上所有點的縱坐標縮短到原來的(橫坐標不變),得到的圖象,求的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設實數(shù),滿足約束條件,的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
(Ⅰ)求f( )的值.
(Ⅱ)求f(x)的最小正周期及單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高考改革是教育體制改革中的重點領域和關鍵環(huán)節(jié),全社會極其關注.近年來,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目語文、數(shù)學、外語,“”指考生根據本人興趣特長和擬報考學校及專業(yè)的要求,從物理、化學、生物、歷史、政治、地理六科中選擇門作為選考科目,其中語、數(shù)、外三門課各占分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體的,以此賦分分、分、分、分.為了讓學生們體驗“賦分制”計算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單科全班排名,每名學生選三科計算成績),已知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學成績(滿分分)莖葉圖如下圖所示,小明同學在這次考試中物理分,化學多分.

(1)求小明物理成績的最后得分;

(2)若小明的化學成績最后得分為分,求小明的原始成績的可能值;

(3)若小明必選物理,其他兩科在剩下的五科中任選,求小明此次考試選考科目包括化學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】盒中裝有個零件,其中個是使用過的,另外個未經使用.

1)從盒中每次隨機抽取個零件,每次觀察后都將零件放回盒中,求次抽取中恰有次抽到使用過的零件的概率;

2)從盒中隨機抽取個零件,使用后放回盒中,記此時盒中使用過的零件個數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且.

(1)求的值;

(2)若,求的取值范圍;

(3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案