證法一:∵0<x<1,∴0<1-x<1.
∴+-(a+b)2=+-a2-2ab-b2=a2·-2ab+b2·=(a-b)2≥0.∴+≥(a+b)2.
證法二:∵0<x<1,∴可設x=sin2θ且θ∈(0,),則1-x=cos2θ.
∴+=+=a2csc2θ+b2sec2θ=a2(1+cot2θ)+b2(1+tan2θ)=a2+b2+a2cot2θ+b2tan2θ≥a2+b2+2=a2+b2+2ab=(a+b)2.
∴+≥(a+b)2.
證法三:∵0<x<1,∴0<1-x<1.∴+=[x+(1-x)]·(+)=a2+b2+a2+b2≥a2+b2+2ab=(a+b)2.∴+≥(a+b)2.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com