已知f(x)=x2-bx+c,且f(0)=3,f(1+x)=f(1-x),則有(  )
分析:先根據(jù)題意求得b,c的值,先討論bx與cx,的大小,再結(jié)合二次函數(shù)的單調(diào)性即可比較f(bx)與f(cx)的大小關(guān)系即可.
解答:解:由f(x)=x2-bx+c,且f(0)=3,可得
c=3
由f(1+x)=f(1-x)可得函數(shù)的對稱軸為x=1
b
2
=1,即b=2
故f(x)=x2-2x+3
∴bx=2x,cx=3x,
①當(dāng)x>0時,3x>2x>1⇒f(bx)<f(cx);
②當(dāng)x<0時,3x<2x<1⇒f(bx)<f(cx);
③當(dāng)x=0時,3x=2x,⇒f(bx)=f(cx);
綜上:f(bx)≤f(cx).
故選:B
點(diǎn)評:本小題主要考查函數(shù)單調(diào)性的應(yīng)用、二次函數(shù)的性質(zhì)、二次函數(shù)的性質(zhì)的應(yīng)用等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、分類討論思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+ax+b(a,b∈R的定義域?yàn)閇-1,1].
(1)記|f(x)|的最大值為M,求證:M≥
1
2
.
(2)求出(1)中的M=
1
2
時,f(x)
的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+x+1,則f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+2x,數(shù)列{an}滿足a1=3,an+1=f′(an)-n-1,數(shù)列{bn}滿足b1=2,bn+1=f(bn).
(1)求證:數(shù)列{an-n}為等比數(shù)列;
(2)令cn=
1
an-n-1
,求證:c2+c3+…+cn
2
3
;
(3)求證:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)確定k的值;
(2)求f(x)+
9f(x)
的最小值及對應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一個奇函數(shù)g(x)和一個偶函數(shù)h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在區(qū)間(-∞,(a+1)2]上都是減函數(shù),求a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,比較f(1)和
16
的大。

查看答案和解析>>

同步練習(xí)冊答案