對(duì)于數(shù)列{an},如果存在確定的正整數(shù)T,使得an+Tan對(duì)一切正整數(shù)n都成立,則稱數(shù)列{an}是以T為周期的周期數(shù)列.若一個(gè)周期數(shù)列{an}滿足an+2an+1annN+,且a11,a22,求a200,a2009

答案:
解析:

  分析:通過討論數(shù)列的周期性求解.

  解:因?yàn)?/FONT>an+2an+1an,所以an+3an+2an+1an+1anan+1=-an,所以an+6=-an+3an

  所以{an}是以6為周期的周期數(shù)列,而且an+3=-annN+

  所以a200a2+6×33a22,a2009a5+6×334a2+3=-a2=-2

  點(diǎn)評(píng):對(duì)于一些取值成規(guī)律性重復(fù)的數(shù)列,可以借助于周期函數(shù)的性質(zhì)來求解,往往能達(dá)到很好的效果.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、對(duì)于數(shù)列{an}(n∈N+,an∈N+),若bk為a1,a2,a3…ak中的最大值,則稱數(shù)列{bn}為數(shù)列{an}的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7.由此定義可知,“凸值數(shù)列”為1,3,3,9,9的所有數(shù)列{an}個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于數(shù)列{an},定義數(shù)列{bm}如下:對(duì)于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值. 如{an}是單調(diào)遞增數(shù)列,a3=4,則b4=3;若數(shù)列{an}的通項(xiàng)公式為an=2n-1,n∈N*,則數(shù)列{bm}的通項(xiàng)是
bm=
m+1
2
,m是奇數(shù)
m+2
2
,m是偶數(shù)
bm=
m+1
2
,m是奇數(shù)
m+2
2
,m是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如表定義的函數(shù)f(x),對(duì)于數(shù)列{an},a1=4,an=f(an-1),n=2,3,4,…,那么a2006的值是( 。
x 1 2 3 4 5
f(x) 5 4 3 1 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于數(shù)列{An}:A1,A2,A3,…,An,若不改變A1,僅改變A2,A3,…,An中部分項(xiàng)的符號(hào),得到的新數(shù)列{an}稱為數(shù)列{An}的一個(gè)生成數(shù)列.如僅改變數(shù)列1,2,3,4,5的第二、三項(xiàng)的符號(hào)可以得到一個(gè)生成數(shù)列1,-2,-3,4,5.已知數(shù)列{an}為數(shù)列{
1
2n
}(n∈N*)
的生成數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.
(1)寫出S3的所有可能值;
(2)若生成數(shù)列{an}滿足:S3n=
1
7
(1-
1
8n
)
,求{an}的通項(xiàng)公式;
(3)證明:對(duì)于給定的n∈N*,Sn的所有可能值組成的集合為:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于數(shù)列{An}:A1,A2,A3,…,An,若不改變A1,僅改變A2,A3,…,An中部分項(xiàng)的符號(hào),得到的新數(shù)列{an}稱為數(shù)列{An}的一個(gè)生成數(shù)列.如僅改變數(shù)列1,2,3,4,5的第二、三項(xiàng)的符號(hào)可以得到一個(gè)生成數(shù)列1,-2,-3,4,5.已知數(shù)列{an}為數(shù)列{
1
2n
}(n∈N*)
的生成數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.
(1)寫出S3的所有可能值;
(2)若生成數(shù)列{an}的通項(xiàng)公式為an=
1
2n
,n=3k+1
-
1
2n
,n≠3k+1
,k∈N
,求Sn;
(3)用數(shù)學(xué)歸納法證明:對(duì)于給定的n∈N*,Sn的所有可能值組成的集合為:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

同步練習(xí)冊(cè)答案