設(shè)函數(shù)f(x)=
1
2
x2-9lnx
在區(qū)間[a-1,a+1]上單調(diào)遞減,則實數(shù)a的取值范圍是( 。
分析:首先求出函數(shù)的單調(diào)遞減區(qū)間,然后結(jié)合數(shù)軸分析求出m的范圍即可.
解答:解:∵f(x)=
1
2
x2-9lnx
,
∴函數(shù)f(x)的定義域是(0,+∞),
f′(x)=x-
9
x
,
∵x>0,∴由f′(x)=x-
9
x
<0,得0<x<3.
∵函數(shù)f(x)=
1
2
x2-9lnx
在區(qū)間[a-1,a+1]上單調(diào)遞減,
a-1>0
a+1≤3
,解得1<a≤2.
故選A.
點評:此題是個中檔題.考查學(xué)生掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及分析解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
2
)x-7 (x<0)
x
 
(x≥0)
,若f(a)<1
,則實數(shù)a的取值范圍是(  )
A、(-∞,-3)
B、(1,+∞)
C、(-3,1)
D、(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
2
)x-1,x≥0
x2,x<0
與函數(shù)g(x)的圖象關(guān)于直線y=x對稱,則當(dāng)x>0時,g(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
2
)
x
 (x≤0)
x
1
2
     (x>0)
,若f(x0)>2,則x0的取值范圍是( 。
A、(-1,4)
B、(-1,+∞)
C、(4,+∞)
D、(-∞,-1)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
2
)x-3(x≤0)
x
1
2
(x>0)
,已知f(a)>1,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
2
)x+1(x<-1)
-x2+2(-1≤x≤2)
3x-8(x>2)

(Ⅰ)請在下列直角坐標(biāo)系中畫出函數(shù)f(x)的圖象;
(Ⅱ)根據(jù)(Ⅰ)的圖象,試分別寫出關(guān)于x的方程f(x)=t有2,3,4個實數(shù)解時,相應(yīng)的實數(shù)t的取值范圍;
(Ⅲ)記函數(shù)g(x)的定義域為D,若存在x0∈D,使g(x0)=x0成立,則稱點(x0,x0)為函數(shù)g(x)圖象上的不動點.試問,函數(shù)f(x)圖象上是否存在不動點,若存在,求出不動點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案