我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過(guò)點(diǎn)A(-3,4),且法向量為=(1,-2)的直線(點(diǎn)法式)方程為:1×(x+3)+(-2)×(y-4)=0,化簡(jiǎn)得x-2y+11=0.類比以上方法,在空間直角坐標(biāo)系o-xyz中,經(jīng)過(guò)點(diǎn)A(1,2,3)且法向量為=(-1,-2,1)的平面的方程為____________          
(化簡(jiǎn)后用關(guān)于x,y,z的一般式方程表示)

x+2y-z-2=0 

解析試題分析:根據(jù)法向量的定義,若為平面α的法向量,則⊥α,任取平面α內(nèi)一點(diǎn)P(x,y,z),
,∵=(1-x,2-y,3-z),=(-1,-2,1),∴(x-1)+2(y-2)+(3-z)=0,即x+2y-z-2=0,
故答案為x+2y-z-2=0。
考點(diǎn):本題主要考查類比推理的概念和方法,向量的坐標(biāo)運(yùn)算。
點(diǎn)評(píng):類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).由于平面向量與空間向量的坐標(biāo)運(yùn)算類似,因此可以利用求平面曲線方程的辦法,通過(guò)構(gòu)造向量,利用向量的運(yùn)算確定空間平面方程。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

觀察各式:,則依次類推可得           ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

平面上有條直線, 這條直線任意兩條不平行, 任意三條不共點(diǎn), 記這條直線將平面分成部分, 則___________, 時(shí),_________________.)(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若數(shù)軸上不同的兩點(diǎn)分別與實(shí)數(shù)對(duì)應(yīng),則線段的中點(diǎn)與實(shí)數(shù)對(duì)應(yīng),由此結(jié)論類比到平面得,若平面上不共線的三點(diǎn)分別與二元實(shí)數(shù)對(duì)對(duì)應(yīng),則的重心                    對(duì)應(yīng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)n為正整數(shù),f(n)=1++…+,計(jì)算得f(2)=,f(4)>2,f(8)>,f(16)>3,觀察上述結(jié)果,可推測(cè)一般的結(jié)論為_______________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在平面幾何里,已知直角△SAB的兩邊SA,SB互相垂直,且,邊上的高; 拓展到空間,如圖,三棱錐的三條側(cè)棱SB、SB、SC兩兩相互垂直,且,則點(diǎn)到面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

專家由圓x+y=a的面積S=a通過(guò)類比推理猜想橢圓的面積S=ab. 之后利用演繹推理證明了這個(gè)公式是對(duì)的! 在平面直角坐標(biāo)系中, 點(diǎn)集A="{" (x, y)| }, 點(diǎn)集B="{(x," y)| , 則點(diǎn)集M="{(x," y)|x=x+x, y=y+y, (x, y)A, (x, y)B}所表示的區(qū)域的面積為_____________. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖所示,從中間陰影算起,圖1表示蜂巢有1層只有一個(gè)室,圖2表示蜂巢有2層共有7個(gè)室,圖3表示蜂巢有3層共有19個(gè)室,圖4表示蜂巢有4層共有37個(gè)室. 觀察蜂巢的室的規(guī)律,指出蜂巢有n層時(shí)共有_______個(gè)室.
        
2107

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若P表示已知條件或已有的定義、公理或定理,Q表示所得到的結(jié)論,下列框圖表示的證明方法是            

查看答案和解析>>

同步練習(xí)冊(cè)答案