我們把形如y=f(x
)
φ(x)
 
的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)法數(shù):在函數(shù)解析式兩邊求對(duì)數(shù)得lny=lnf(x
)
φ(x)
 
=φ(x)lnf(x)
,兩邊對(duì)x求導(dǎo)數(shù),得
y′
y
=φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
,于是y′=f(x
)
φ(x)
 
[φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
]
,運(yùn)用此方法可以求得函數(shù)y=
x
x
 
(x>0)
在(1,1)處的切線方程是
y=x
y=x
分析:仔細(xì)分析題意,找出f(x),g(x),然后依據(jù)題意求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義,求出切線方程即可.
解答:解:仿照題目給定的方法,f(x)=x,g(x)=x
所以f′(x)=1,g′(x)=1
所以,y′=(1×lnx+x•
1
x
)xx
∴y′
|
 
x=1
=(1×lnx+x•
1
x
)xx
|
 
x=1
=1,
即:函數(shù)y=
x
x
 
(x>0)
在(1,1)處的切線的斜率為1,
故切線方程為:y-1=x-1,即y=x
故答案為:y=x.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義,導(dǎo)數(shù)的運(yùn)算,考查計(jì)算能力,分析問題解決問題的能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

我們把形如f(x)=
a|x|-b
(a,b>0)
因其函數(shù)圖象十分像漢字“囧”,故親切稱之為囧函數(shù).現(xiàn)在為了方便討論我們令a=b=1.
(1)在直角坐標(biāo)系上畫出函數(shù)y=f(x)的囧圖;
(2)討論關(guān)于x的方程f(x)=k的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們把形如y=f(x)φ(x)的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得lny=φ(x)lnf(x),兩邊求導(dǎo)數(shù),得
y′
y
=φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
,于是y′=f(x)φ(x)[φ′(x)lnf(x)+φ(x)
f′(x)
f(x)
]
,運(yùn)用此方法可以探求得函數(shù)y=x
1
x
的一個(gè)單調(diào)遞增區(qū)間是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

我們把形如數(shù)學(xué)公式因其函數(shù)圖象十分像漢字“囧”,故親切稱之為囧函數(shù).現(xiàn)在為了方便討論我們令a=b=1.
(1)在直角坐標(biāo)系上畫出函數(shù)y=f(x)的囧圖;
(2)討論關(guān)于x的方程f(x)=k的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省期中題 題型:解答題

我們把形如因其函數(shù)圖象十分像漢字“囧”,故親切稱之為囧函數(shù).現(xiàn)在為了方便討論我們令a=b=1.
(1)在直角坐標(biāo)系上畫出函數(shù)y=f(x)的囧圖;
(2)討論關(guān)于x的方程f(x)=k的解的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案