如圖所示,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,則點A到直線l的距離AD為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
D
分析:由已知中,圓O的直徑AB=6,BC=3,根據(jù)圓周角定理的推論2,我們易判斷出△ABC是∠BAC=30°的直角三角形,又由直線l為圓O的切線我們結(jié)合弦切角定理,易得到△ACD是∠DCA=60°的直角三角形,根據(jù)直角三角形的性質(zhì),即可得到答案.
解答:∵圓O的直徑AB=6,BC=3
∴∠BAC=30°,線段AC=3
又∵直線l為圓O的切線,
∴∠DCA=∠B=60°
∴AD=
故選D
點評:本題考查的知識點是圓周角定理,弦切角定理,及一個角為30°的直角三角形的性質(zhì),其中根據(jù)已知,判斷出△ABC是∠BAC=30°的直角三角形,是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

5、如圖所示,圓O的直徑AB=6,C為圓周上一點,BC=3過C作圓的切線l,過A作l的垂線AD,垂足為D,則∠DAC=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,則點A到直線l的距離AD為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

15、如圖所示,圓O的直徑AB=6,C為圓周上一點,BC=3過C作圓的切線l,過A作l的垂線AD,垂足為D,則∠DAC=
30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•營口二模)(幾何證明選講選做題)如圖所示,圓O的直徑AB=6,C為圓周上一點,BC=3.過C作圓的切線l,過A作l的垂線AD,AD分別與直線l、圓交于點D,E,則∠DAC=
30°
30°
,線段AE的長為
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
(A)(極坐標與參數(shù)方程)直線l:x-y+b=0與曲線
x=1+
2
cosθ
y=-2+
2
sinθ
是參數(shù))相切,則b=
-1或-5
-1或-5

(B)設(shè)6≤|x-a|+|x-b|對任意的x∈R恒成立.則a與b滿足的關(guān)系是
|a-b|≥6
|a-b|≥6

(C)如圖所示,圓O的直徑為6,C為圓周上一點.BC=3,過C作圓的切線l.過A作l的垂線AD,垂足為D,則線段CD的長為
3
3
2
3
3
2

查看答案和解析>>

同步練習冊答案