11.已知集合A={x|x2+3x-4≥0}  B={x|$\frac{2x-1}{x+1}$<1}  
(1)求集合A、B;
(2)求A∪B,(CRB)∩A.

分析 (1)解二次不等式和分式不等式,可得集合A、B;
(2)再由集合交集,交集,補(bǔ)充的定義,可得A∪B,(CRB)∩A.

解答 解:(1)解x2+3x-4=0得:x=-4,或x=1,
故集合A={x|x2+3x-4≥0}=(-∞,-4]∪[1,+∞),
$\frac{2x-1}{x+1}<1$可化為:$\frac{x-2}{x+1}<0$,
故集合B={x|$\frac{2x-1}{x+1}$<1}=(-1,2),
(2)A∪B=(-∞,-4]∪[1,+∞)∪(-1,2)=(-∞,-4]∪(-1,+∞),
CRB=(-∞,-1]∪[2,+∞),
∴(CRB)∩A=(-∞,-4]∪[2,+∞)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是不等式的解法,集合的交集,并集,補(bǔ)集運(yùn)算,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某單位用鐵絲制作如圖所示框架,框架的下部是邊長(zhǎng)分別為x、y(單位:米)的矩形,上部是一個(gè)半圓形,要求框架所圍成的總面積為8m2
(1)將y表示成x的函數(shù),并求定義域;
(2)問(wèn)x、y分別為多少時(shí)用料最。浚ň_到0.001m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,且橢圓經(jīng)過(guò)點(diǎn)N(0,-$\sqrt{3}$).
(1)求橢圓C的方程;
(2)求橢圓上的點(diǎn)到點(diǎn)(0,2)距離的最大值,并求出該點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)在極坐標(biāo)系Ox中,設(shè)集合A={(ρ,θ)|0≤θ≤$\frac{π}{4}$,0≤ρ≤cosθ},求集合A所表示的區(qū)域的面積;
(2)在直角坐標(biāo)系xOy中,直線l1$\left\{\begin{array}{l}{x=-4+tcos\frac{π}{4}}\\{y=tsin\frac{π}{4}}\end{array}\right.$(t為參數(shù)),曲線C1$\left\{\begin{array}{l}{x=acosθ}\\{y=2sinθ}\end{array}\right.$(θ表示參數(shù)),其中a>0,若曲線C上所有點(diǎn)均在直線l的右下方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,a,b,c分別為角A,B,C對(duì)應(yīng)的邊,若$a=\sqrt{3},b=\sqrt{2},∠B=\frac{π}{4}$,則∠C=$\frac{5π}{12}$或$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E是線段AA1的中點(diǎn),M是平面BB1D1D內(nèi)的點(diǎn),則|AM|+|ME|的最小值是$\frac{3}{2}$;若|ME|≤1,則點(diǎn)M在平面BB1D1D內(nèi)形成的軌跡的面積等于$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)$y=\frac{{\sqrt{x+2}}}{|x|-1}$的定義域是[-2,-1)∪(-1,1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.與圓C1:x2+y2-2x-2y+1=0和直線l:y+1=0都相切的圓的圓心軌跡方程是$(x-1)^{2}=6(y+\frac{1}{2})$和$(x-1)^{2}=2(y-\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=$\frac{{{x^2}+1}}{2x+m}$是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)f(x)在(-∞,-1)上的單調(diào)性,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案