已知二次函數(shù)r(x)=ax2-(2a-1)x+b的一個零點是2-
1
a
,函數(shù)g(x)=lnx,設(shè)函數(shù)f(x)=r(x)-g(x).
(1)求b的值;
(2)當(dāng)a>0時,求f(x)的單調(diào)增區(qū)間.
考點:二次函數(shù)的性質(zhì),函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)由已知條件知,將2-
1
a
帶入r(x)=0即可求出b=0;
(2)求f′(x)=
(2ax+1)(x-1)
x
,所以解f′(x)≥0即可得出f(x)的單調(diào)增區(qū)間.
解答: 解:(1)∵r(x)的一個零點為2-
1
a
;
r(2-
1
a
)=a(2-
1
a
)2-(2a-1)(2-
1
a
)+b=0

∴b=0;
(2)f(x)=ax2-(2a-1)x-lnx;
f′(x)=2ax-(2a-1)-
1
x
=
2ax2-(2a-1)x-1
x
=
(2ax+1)(x-1)
x
;
∵a>0,x>0;
∴x≥1時,f′(x)≥0;
∴f(x)在[1,+∞)上單調(diào)遞增;
即f(x)的單調(diào)增區(qū)間為[1,+∞);
點評:考查函數(shù)零點的概念,以及通過解f′(x),解f′(x)≥0得到函數(shù)f(x)單調(diào)增區(qū)間的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x-2,x∈[1,+∞)
x2-2x,x∈(-∞,1)
,則函數(shù)y=f(x)-
1
4
的零點是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足約束條件
5x+y≥5
x+y≤4
y-ex≥0
,則
y
x
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙F1:(x+1)2+y2=
1
9
,⊙F2:(x-1)2+y2=
121
9
,橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1,F(xiàn)2分別為橢圓C的兩個焦點,設(shè)P為橢圓C上一點,存在以P為圓心的⊙P與⊙F1外切,與⊙F2內(nèi)切.
(1)求橢圓C的方程;
(2)過點F2作斜率為k的直線與橢圓C相交于A,B兩點,與y軸相交于點D,若
DA
=2
AF2
,
DB
BF2
,求λ的值.
(3)已知真命題:“如果點T(x0,y0)在橢圓
x2
a2
+
y2
b2
=1(a>b>0)上,那么過點T的橢圓的切線方程為
x0x
a2
+
y0y
b2
=1
.”利用上述結(jié)論,解答下面的問題:
已知點Q是直線l:x+2y=8上的動點,過點Q作橢圓C的兩條切線QM、QN,M、N為切點,問直線MN是否過定點?若是,請求出定點坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“若存在一條與函數(shù)y=f(x)的圖象有兩個不同交點P(x1,y1),Q(x2,y2)的直線,使y=f(x)在x=
x1+x2
2
處的切線與此直線平行”,則稱這樣的函數(shù)y=f(x)為“hold函數(shù)”;下列函數(shù):
①y=
1
x
;②y=x2(x>0);③y=
1-x2
;④y=lnx;
其中為“hold函數(shù)”的是( 。
A、①②④B、②③
C、③④D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,棱錐P-ABCD的底面ABCD是矩形,PA⊥面ABCD,PA=AD=4,BD=4
2
,E為PD的中點.
(1)求證:BD⊥面PAC;
(2)求二面角E-AC-D的余弦值;
(3)設(shè)M為PA的中點,在棱BC上是否存在點F,
使MF∥面ACE?如果存在,請指出F點的位置;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x3,x∈(-2,2)
2x,x∈(2,π)
cosx,x∈(π,2π)
,求f(x)在區(qū)間(-2,2π)上的定積分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,PA=AD=2,點M、N分別在棱PD、PC上,且PC⊥平面AMN.
(1)求AM與PD所成的角;
(2)求二面角P-AM-N的余弦值;
(3)求直線CD與平面AMN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)各項均為實數(shù)的等比數(shù)列{an}的前k項和為Sk,公比q滿足:|q|≠1,若S6n=2S4n+11S2n,則
S10n
S8n
=
 

查看答案和解析>>

同步練習(xí)冊答案