13.已知數(shù)列{an}的通項(xiàng)公式為an=pn+q,其中p、q為常數(shù),那么這個(gè)數(shù)列一定是等差數(shù)列嗎?

分析 只要證明:n≥2時(shí),an-an-1等于與n無(wú)關(guān)的常數(shù)即可.

解答 解:這個(gè)數(shù)列一定是等差數(shù)列,證明如下:
n=1時(shí),a1=p+q.
n≥2時(shí),an-an-1=pn+q-[p(n-1)+q]=p,
∴數(shù)列{an}是首項(xiàng)為p+q,公差為p的等差數(shù)列.

點(diǎn)評(píng) 本題考查了等差數(shù)列的定義及其通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在直角坐標(biāo)系xOy中,直線l:x-y=1,在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C:ρ22sin2θ-2=0,直線l與曲線C相交于P、Q兩點(diǎn).
(1)求曲線C的直角坐標(biāo)方程;
(2)求△OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.觀察如圖所示幾何體,其中判斷正確的是( 。

A.①是棱臺(tái)B.②是圓臺(tái)C.③是棱錐D.④不是棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,在直角△ABC中,AB⊥BC,D為BC的中點(diǎn),以AB為直徑作圓O,分別交AC、AD于點(diǎn)E,F(xiàn),若AF=3,F(xiàn)D=1,則AE等于(  )
A.$\sqrt{6}$B.$\frac{6\sqrt{7}}{7}$C.$\frac{8\sqrt{7}}{7}$D.$\frac{4\sqrt{21}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在[0,$\frac{π}{2}$]上的曲線y=sinx繞x軸旋轉(zhuǎn)一周所得圖形的體積為( 。
A.$\frac{{π}^{2}}{4}$B.$\frac{{π}^{2}}{a}$C.$\frac{{π}^{2}}{2}$D.π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.4月23日是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動(dòng),并用簡(jiǎn)單隨機(jī)抽樣方法抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書謎”,低于60分鐘的學(xué)生稱為“非讀書謎”
(Ⅰ)求x的值并估計(jì)該校3000名學(xué)生中讀書謎大概有多少?(將頻率視為概率)
(Ⅱ)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書謎”與性別有關(guān)?
非讀書迷讀書迷合計(jì)
 15 
  45
合計(jì)  
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查方法來(lái)估計(jì)該地區(qū)的學(xué)生的課外閱讀時(shí)間?說(shuō)明理由.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖是某運(yùn)動(dòng)員在某個(gè)賽季得分的莖葉圖統(tǒng)計(jì)表,則該運(yùn)動(dòng)員得分的中位數(shù)是(  )
A.2B.24C.23D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知回歸方程$\widehat{y}$=2x+1,而試驗(yàn)得到一組數(shù)據(jù)是(2,4.9),(3,7.1),(4,9.1),則殘差平方和是0.03.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.不等式$\frac{{{x^2}-1}}{2x-1}$≤0的解集是$({-∞,-1}]∪({\frac{1}{2},1}]$.

查看答案和解析>>

同步練習(xí)冊(cè)答案