9.一組數(shù)據(jù)莖葉圖如圖所示,則它的方差為$\frac{17}{3}$.

分析 根據(jù)莖葉圖所給的數(shù)據(jù),做出這組數(shù)據(jù)的平均數(shù),把所給的數(shù)據(jù)和平均數(shù)代入求方差的個(gè)數(shù),求出六個(gè)數(shù)據(jù)與平均數(shù)的差的平方的平均數(shù)就是這組數(shù)據(jù)的方差.

解答 解:數(shù)據(jù)為:7,8,9,10,12,14,
平均數(shù)為:$\frac{7+8+9+10+12+14}{6}$=10,
對應(yīng)的方差為$\frac{1}{6}$[(7-10)2+(8-10)2+(9-10)2+(10-10)2+(12-10)2+(14-10)2]=$\frac{17}{3}$.
故答案為:$\frac{17}{3}$

點(diǎn)評 本題主要考查方差的計(jì)算,利用莖葉圖求出數(shù)據(jù)的平均數(shù)是解決本題的關(guān)鍵,要求熟練掌握相應(yīng)的公式,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖所示,PA為圓O的切線,A為切點(diǎn),PO交圓O于B,C兩點(diǎn),PA=20,PB=10,∠BAC的角平分線與BC和圓O分別交于點(diǎn)D和E.
(1)求證:$\frac{AB}{AC}=\frac{PA}{PC}$.
(2)求AD•AE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知l1:y=k1x+b1,l2:y=k2x+b2,命題p:“若l1⊥l2,則k1k2=-1”的逆否命題是若k1k2≠-1,則l1與l2不垂直,原命題p為真命題.(填“真”或“假”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓C:x2-(1+a)x+y2-ay+a=0(a∈R).
(Ⅰ) 若a=1,求直線y=x被圓C所截得的弦長;
(Ⅱ) 若a>1,如圖,圓C與x軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)).過點(diǎn)M的動直線l與圓O:x2+y2=4相交于A,B兩點(diǎn).問:是否存在實(shí)數(shù)a,使得對任意的直線l均有∠ANM=∠BNM?若存在,求出實(shí)數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.袋中有形狀、大小都相同的4只球,其中2只紅球,2只黃球,從中一次隨機(jī)摸出2只球,則這2只球顏色不同的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f′(x)是函數(shù)f(x)=xsinx的導(dǎo)函數(shù),則f′($\frac{π}{2}$)的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.集合A={1,2},B={1,2,3},則下列關(guān)系正確的是( 。
A.A=BB.A∩B=∅C.A⊆BD.A?B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\sqrt{x-1}$+$\frac{1}{x-2}$的定義域是{x|x≥1且x≠2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.用定義判斷函數(shù)f(x)=ln$\frac{x-1}{x+1}$的奇偶性.

查看答案和解析>>

同步練習(xí)冊答案