【題目】某校隨機調(diào)查了80位學(xué)生,以研究學(xué)生中愛好羽毛球運動與性別的關(guān)系,得到下面的列聯(lián)表:

愛好

不愛好

合計

20

30

50

10

20

30

合計

30

50

80

(Ⅰ)將此樣本的頻率估計為總體的概率,隨機調(diào)查了本校的3名學(xué)生,設(shè)這3人中愛好羽毛球運動的人數(shù)為,求 的分布列,數(shù)學(xué)期望及方差;

(Ⅱ)根據(jù)表中數(shù)據(jù),能否有充分證據(jù)判斷愛好羽毛球運動與性別有關(guān)?若有,有多大把握?

0.500

0.100

0.050

0.010

0.455

2.706

3.841

6.635

附:

【答案】(1) ;(2)沒有充分證據(jù)判斷愛好羽毛球運動與性別有關(guān).

【解析】試題分析】(1)先求出隨機變量的概率 , 及分布列,再運用隨機變量的數(shù)學(xué)期望公式及方差計算公式求解;(2)先借助22列聯(lián)表中的數(shù)據(jù),運用卡方計算公式

算出,再與參數(shù)表進比對,從而做出判斷:

解:(1)任一學(xué)生愛好羽毛球的概率為,故.

;

;

的分布列為

0

1

2

3

(2)

故沒有充分證據(jù)判斷愛好羽毛球運動與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市化工廠三個車間共有工人1 000名,各車間男、女工人數(shù)如下表:

第一車間

第二車間

第三車間

女工

173

100

y

男工

177

x

z

已知在全廠工人中隨機抽取1名,抽到第二車間男工的可能性是0. 15.

(1)求x的值;

(2)現(xiàn)用分層抽樣的方法在全廠抽取50名工人,問應(yīng)在第三車間抽取多少名?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點處的切線與直線垂直.(注: 為自然對數(shù)的底數(shù))

(1)求的值;

(2)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;

(3)求證:當(dāng)時, 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點為,右頂點為,上頂點為,過、、三點的圓的圓心坐標為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線為常數(shù), )與橢圓交于不同的兩點

(ⅰ)當(dāng)直線,且時,求直線的方程;

(ⅱ)當(dāng)坐標原點到直線的距離為,且面積為時,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點處的切線方程;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值;

(3)若正實數(shù)滿足,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“如果物理成績好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題.”某班針對“高中生物理學(xué)習(xí)對數(shù)學(xué)學(xué)習(xí)的影響”進行研究,得到了學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系的結(jié)論.現(xiàn)從該班隨機抽取5名學(xué)生在一次考試中的物理和數(shù)學(xué)成績,如下表:

編號

成績

1

2

3

4

5

物理(

90

85

74

68

63

數(shù)學(xué)(

130

125

110

95

90

(1)求數(shù)學(xué)成績關(guān)于物理成績的線性回歸方程精確到),若某位學(xué)生的物理成績?yōu)?0分,預(yù)測他的數(shù)學(xué)成績;

(2)要從抽取的五位學(xué)生中隨機選出三位參加一項知識競賽,以表示選中的學(xué)生的數(shù)學(xué)成績高于100分的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

(參數(shù)公式: , .)

參考數(shù)據(jù): ,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為,雙曲線的一條漸近線與軸所成的夾角為,且雙曲線的焦距為.

(1)求橢圓的方程;

(2)設(shè)分別為橢圓的左,右焦點,過作直線 (與軸不重合)交橢圓于, 兩點,線段的中點為,記直線的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察圖中各正方形圖案,每條邊上有an個圓點,第an個圖案中圓點的個數(shù)是an,按此規(guī)律推斷出所有圓點總和Snn的關(guān)系式為( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過定點P(2,3),傾斜角為.

(Ⅰ)寫出直線l的參數(shù)方程和圓C的標準方程;

(Ⅱ)設(shè)直線l與圓C相交于A,B兩點,求|PA|·|PB|的值.

查看答案和解析>>

同步練習(xí)冊答案