【題目】某市化工廠三個車間共有工人1 000名,各車間男、女工人數(shù)如下表:

第一車間

第二車間

第三車間

女工

173

100

y

男工

177

x

z

已知在全廠工人中隨機抽取1名,抽到第二車間男工的可能性是0. 15.

(1)求x的值;

(2)現(xiàn)用分層抽樣的方法在全廠抽取50名工人,問應(yīng)在第三車間抽取多少名?

【答案】(1)x=150(2)20

【解析】試題分析:(1)在抽樣過程中每個個體被抽到的概率是一樣的,抽到第二車間男工的概率是0.15,用x除以1000就得到0.15,算出x的值.(2)先得出第三車間的總?cè)藬?shù),根據(jù)每個個體被抽到的概率,得出m

解:(1)0.15x150.

(2)因為第一車間的工人數(shù)是173177350,第二車間的工人數(shù)是100150250,

所以第三車間的工人數(shù)是1 000350250400.

設(shè)應(yīng)從第三車間抽取m名工人,則由 ,

m20.

所以應(yīng)在第三車間抽取20名工人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圓上任取一點,過點軸的垂線段, 為垂足,點在線段上,且,點在圓上運動。

(1)求點的軌跡方程;

(2)過定點的直線與點的軌跡交于兩點,在軸上是否存在點,使為常數(shù),若存在,求出點的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線在點 處的切線平行直線,且點在第三象限.

1)求的坐標(biāo);

2)若直線, 也過切點 ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三(1)班班主任李老師為了了解本班學(xué)生喜愛中國古典文學(xué)是否與性別有關(guān),對全班50人進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡中國古典文學(xué)

不喜歡中國古典文學(xué)

合計

女生

5

男生

10

合計

50

已知從全班50人中隨機抽取1人,抽到喜歡中國古典文學(xué)的學(xué)生的概率為

(1)請將上面的列聯(lián)表補充完整;

(2)是否有的把握認(rèn)為喜歡中國古典文學(xué)與性別有關(guān)?請說明理由;

(3)已知在喜歡中國古典文學(xué)的10位男生中,,還喜歡數(shù)學(xué),還喜歡繪畫,,還喜歡體育.現(xiàn)從喜歡數(shù)學(xué)、繪畫和體育的男生中各選出1名進(jìn)行其他方面的調(diào)查,求不全被選中的概率.

參考公式及數(shù)據(jù):,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了制定合理的節(jié)電方案,供電局對居民用電情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數(shù)據(jù)按照,分成9組,制成了如圖所示的頻率直方圖.

(1)求直方圖中的值并估計居民月均用電量的中位數(shù);

(2)從樣本里月均用電量不低于700度的用戶中隨機抽取4戶,用表示月均用電量不低于800度的用戶數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,EAA1的中點,畫出過D1、C、E的平面與平面ABB1A1的交線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, , , 底面

(1)證明:平面平面;

(2)若二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1=2,an+1=(n∈N+),

(1)計算a2、a3、a4并由此猜想通項公式an;

(2)證明(1)中的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校隨機調(diào)查了80位學(xué)生,以研究學(xué)生中愛好羽毛球運動與性別的關(guān)系,得到下面的列聯(lián)表:

愛好

不愛好

合計

20

30

50

10

20

30

合計

30

50

80

(Ⅰ)將此樣本的頻率估計為總體的概率,隨機調(diào)查了本校的3名學(xué)生,設(shè)這3人中愛好羽毛球運動的人數(shù)為,求 的分布列,數(shù)學(xué)期望及方差;

(Ⅱ)根據(jù)表中數(shù)據(jù),能否有充分證據(jù)判斷愛好羽毛球運動與性別有關(guān)?若有,有多大把握?

0.500

0.100

0.050

0.010

0.455

2.706

3.841

6.635

附:

查看答案和解析>>

同步練習(xí)冊答案