10.已知整數(shù)對按如下規(guī)律排成:

照此規(guī)律則第57個(gè)數(shù)對是(2,10).

分析 由已知可知:其點(diǎn)列的排列規(guī)律是(m,n)(m,n∈N*)m+n的和從2開始,依次是3,4…增大,其中m也是依次增大.據(jù)此即可得出.

解答 解:由已知可知:其點(diǎn)列的排列規(guī)律是(m,n)(m,n∈N*)m+n的和從2開始,
依次是3,4…增大,其中m也是依次增大.
而m+n=2只有一個(gè)(1,1);
m+n=3有兩個(gè)(1,2),(2,1);
m+n=4有3個(gè)(1,3),(2,2),(3,1);

m+n=11有10個(gè)(1,10),(2,9),…,(10,1);
其上面共有1+2+…+10=55個(gè);
m+n=11的有(1,11),(2,10),(3,9),…
故第57個(gè)數(shù)對是(2,10).
故答案為(2,10).

點(diǎn)評 本題考查的知識點(diǎn)是歸納推理,歸納推理的一般步驟是:(1)通過觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f(x)-g(x)在[a,b]上兩個(gè)不同的零點(diǎn),則稱f(x)與g(x)的“關(guān)聯(lián)區(qū)間”,若f(x)=$\frac{1}{3}{x^3}-{x^2}$-x與g(x)=2x+b的“關(guān)聯(lián)區(qū)間”是[-3,0],則b的取值范圍是( 。
A.[-9,0]B.$[0,\frac{5}{3}]$C.$[-9,\frac{5}{3}]$D.$[0,\frac{5}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$-ax+b,在點(diǎn)M(1,f(1))處的切線方程為9x+3y-10=0,求
(1)實(shí)數(shù)a,b的值;            
(2)函數(shù)f(x)的單調(diào)區(qū)間以及在區(qū)間[0,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax+4,x∈[0,3]在x=2處有極小值,求函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某汽車生產(chǎn)企業(yè)上年度生產(chǎn)某一品牌汽車的投入成本為10萬元/輛.出廠價(jià)為13萬元/每輛,年銷售量為5000輛,本年度為適應(yīng)市場需求,計(jì)劃提高產(chǎn)品檔次,適當(dāng)增加投入成本,若每輛車投入成本增加的比例為x(0<x<1),則出廠價(jià)相應(yīng)的提高比例為0.7x,年銷售量也相應(yīng)增加,已知年利潤=(每輛車的出廠價(jià)-每輛車的投入成本)×年銷售量).
(1)若每年銷售量的比例為0.4x,寫出本年度的年利潤關(guān)于x的函數(shù)關(guān)系式;
(2)若年銷售量關(guān)于x的函數(shù)為y=3240(-x2+2x+$\frac{5}{3}$),則當(dāng)x為何值時(shí),本年度的年利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x3+ax2+bx+a2
(1)若函數(shù)f(x)在x=1處有極值為10,求實(shí)數(shù)a,b的值;
(2)當(dāng)b=1時(shí),函數(shù)f(x)在區(qū)間(1,2)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,AB∥DC,∠ADC=90°,PC=AB=2AD=2DC=2,點(diǎn)E為PB的中點(diǎn).
(1)求證:平面PAC⊥平面PBC;
(2)求點(diǎn)P到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知實(shí)數(shù)a>0函數(shù)f(x)=ex-ax-1(e為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間及最小值;
(Ⅱ)若f(x)≥0對任意的x∈R恒成立,求實(shí)數(shù)a的值;
(Ⅲ)證明:ln(1+$\frac{2}{2×3}$)+ln(1+$\frac{4}{3×5}$)+ln(1+$\frac{8}{5×9}$)+…+ln[1+$\frac{2^n}{{({2^{n-1}}+1)({2^n}+1)}}}$]<1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

設(shè),,,則( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案