【題目】隨著現(xiàn)代社會的發(fā)展,我國對于環(huán)境保護(hù)越來越重視,企業(yè)的環(huán)保意識也越來越強(qiáng).現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費(fèi)用預(yù)算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少2套系統(tǒng)監(jiān)測出排放超標(biāo),則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標(biāo),則立即同時(shí)啟動(dòng)另外2套系統(tǒng)進(jìn)行1小時(shí)的監(jiān)測,且后啟動(dòng)的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標(biāo),也立即檢查污染源處理系統(tǒng).設(shè)每個(gè)時(shí)間段(1小時(shí)為計(jì)量單位)被每套系統(tǒng)監(jiān)測出排放超標(biāo)的概率均為,且各個(gè)時(shí)間段每套系統(tǒng)監(jiān)測出排放超標(biāo)情況相互獨(dú)立.

1)當(dāng)時(shí),求某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率;

2)若每套環(huán)境監(jiān)測系統(tǒng)運(yùn)行成本為300/小時(shí)(不啟動(dòng)則不產(chǎn)生運(yùn)行費(fèi)用),除運(yùn)行費(fèi)用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費(fèi)用需要100萬元.現(xiàn)以此方案實(shí)施,問該企業(yè)的環(huán)境監(jiān)測費(fèi)用是否會超過預(yù)算(全年按9000小時(shí)計(jì)算)?并說明理由.

【答案】(1);(2)不會超過預(yù)算,理由見解析

【解析】

(1)求出某個(gè)時(shí)間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個(gè)時(shí)間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為,可得某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率;

(2)設(shè)某個(gè)時(shí)間段環(huán)境監(jiān)測系統(tǒng)的運(yùn)行費(fèi)用為元,則的可能取值為900,1500.求得,求得其分布列和期望,對其求導(dǎo),研究函數(shù)的單調(diào)性,可得期望的最大值,從而得出結(jié)論.

(1)某個(gè)時(shí)間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,

某個(gè)時(shí)間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為

某個(gè)時(shí)間段需要檢查污染源處理系統(tǒng)的概率為.

(2)設(shè)某個(gè)時(shí)間段環(huán)境監(jiān)測系統(tǒng)的運(yùn)行費(fèi)用為元,則的可能取值為900,1500.

,

,則

當(dāng)時(shí),,上單調(diào)遞增;

當(dāng)時(shí),在上單調(diào)遞減,

的最大值為,

實(shí)施此方案,最高費(fèi)用為(萬元),

,故不會超過預(yù)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將120202020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為(

A.56383B.57171C.59189D.61242

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn),若直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 經(jīng)過點(diǎn)P(2,1),且離心率為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),在橢圓短軸上有兩點(diǎn)M,N滿足,直線PM、PN分別交橢圓于A,B.探求直線AB是否過定點(diǎn),如果經(jīng)過定點(diǎn)請求出定點(diǎn)的坐標(biāo),如果不經(jīng)過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為為參數(shù)),交于兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)設(shè)點(diǎn);若、成等比數(shù)列,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,其中的導(dǎo)函數(shù).

1)若恒成立,求實(shí)數(shù)的取值范圍;

2)設(shè),比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若的極值點(diǎn),且曲線在兩點(diǎn), 處的切線互相平行,這兩條切線在y軸上的截距分別為、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由我國引領(lǐng)的5G時(shí)代已經(jīng)到來,5G的發(fā)展將直接帶動(dòng)包括運(yùn)營、制造、服務(wù)在內(nèi)的通信行業(yè)整體的快速發(fā)展,進(jìn)而對增長產(chǎn)生直接貢獻(xiàn),并通過產(chǎn)業(yè)間的關(guān)聯(lián)效應(yīng)和波及效應(yīng),間接帶動(dòng)國民經(jīng)濟(jì)各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟(jì)增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對今后幾年的5G經(jīng)濟(jì)產(chǎn)出所做的預(yù)測.結(jié)合下圖,下列說法正確的是(

A.5G的發(fā)展帶動(dòng)今后幾年的總經(jīng)濟(jì)產(chǎn)出逐年增加

B.設(shè)備制造商的經(jīng)濟(jì)產(chǎn)出前期增長較快,后期放緩

C.設(shè)備制造商在各年的總經(jīng)濟(jì)產(chǎn)出中一直處于領(lǐng)先地位

D.信息服務(wù)商與運(yùn)營商的經(jīng)濟(jì)產(chǎn)出的差距有逐步拉大的趨勢

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測試,學(xué)生如果通過其中2次測試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測試,而每個(gè)學(xué)生最多也只能參加5次測試假設(shè)某學(xué)生每次通過測試的概率都是,每次測試時(shí)間間隔恰當(dāng),每次測試通過與否互相獨(dú)立.

1)求該學(xué)生考上大學(xué)的概率.

2)如果考上大學(xué)或參加完5次測試就結(jié)束,記該生參加測試的次數(shù)為X,求X的概率分布及X的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案