【題目】已知,函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若的極值點(diǎn),且曲線在兩點(diǎn) 處的切線互相平行,這兩條切線在y軸上的截距分別為、,求的取值范圍.

【答案】(1)見解析;(2

【解析】

1)根據(jù)導(dǎo)數(shù)和函數(shù)的關(guān)系即可求出函數(shù)的單調(diào)區(qū)間,

2)由x2fx)的極值點(diǎn),以及導(dǎo)數(shù)的幾何意義,可求出相對應(yīng)的切線方程,根據(jù)切線平行可得,同理,.求出b1b2,再構(gòu)造函數(shù),

利用導(dǎo)數(shù),即可求出b1b2的取值范圍

1

①當(dāng)a≤0時,f'x)<0x∈(0,+∞)上恒成立,∴fx)在(0,+∞)上單調(diào)遞減;

②當(dāng)a0時,f'x)<0,時,f'x)>0,

fx)在上單調(diào)遞減,在單調(diào)遞增;

(2)∵x=2fx)的極值點(diǎn),∴由(1)可知

a=1,設(shè)在Px1fx1))處的切線方程為,

Qx2,fx2))處的切線方程為

∴若這兩條切線互相平行,則,∴

,且0x1x26,∴,∴,

x1∈(3,4)令x=0,則,

同理,

【解法一】

,∴

設(shè),

gx)在區(qū)間上單調(diào)遞減,∴

b1-b2的取值范圍是

【解法二】

,其中x∈(3,4

∴函數(shù)gx)在區(qū)間(3,4)上單調(diào)遞增,∴

b1-b2的取值范圍是

【解法三】

x1x2=2x1+x2),

設(shè),則

,∴g'x)>0,

∴函數(shù)gx)在區(qū)間上單調(diào)遞增,

,∴b1-b2的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,長方體ABCDA1B1C1D1的底面ABCD是正方形,點(diǎn)E在棱AA1上,BEEC1.

1)證明:BE⊥平面EB1C1;

2)若AE=A1E,求二面角BECC1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在菱形中,,,的中點(diǎn),以為折痕,將折起,使點(diǎn)到達(dá)點(diǎn)的位置,且平面平面,如圖2.

(1)求證:;

(2)若的中點(diǎn),求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且圓經(jīng)過橢圓C的上、下頂點(diǎn).

1)求橢圓C的方程;

2)若直線l與橢圓C相切,且與橢圓相交于M,N兩點(diǎn),證明:的面積為定值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在菱形中,為線段的中點(diǎn)(如圖1).將沿折起到的位置,使得平面平面,為線段的中點(diǎn)(如圖2).

(Ⅰ)求證:

(Ⅱ)求證:平面;

(Ⅲ)當(dāng)四棱錐的體積為時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與拋物線(常數(shù))相交于不同的兩點(diǎn)、,且為定值),線段的中點(diǎn)為,與直線平行的切線的切點(diǎn)為(不與拋物線對稱軸平行或重合且與拋物線只有一個公共點(diǎn)的直線稱為拋物線的切線,這個公共點(diǎn)為切點(diǎn)).

1)用表示出點(diǎn)、點(diǎn)的坐標(biāo),并證明垂直于軸;

2)求的面積,證明的面積與無關(guān),只與有關(guān);

3)小張所在的興趣小組完成上面兩個小題后,小張連,再作與、平行的切線,切點(diǎn)分別為、,小張馬上寫出了的面積,由此小張求出了直線與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請你說出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校藝術(shù)專業(yè)300名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[3040),,[8090],并整理得到如下頻率分布直方圖:

(1)從總體的300名學(xué)生中隨機(jī)抽取一人,估計其分?jǐn)?shù)小于70的概率;

(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=2px的焦點(diǎn)為F,準(zhǔn)線方程是x=﹣1

I)求此拋物線的方程;

)設(shè)點(diǎn)M在此拋物線上,且|MF|=3,若O為坐標(biāo)原點(diǎn),求△OFM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列有關(guān)光線的入射與反射的兩個事實(shí)現(xiàn)象:現(xiàn)象(1):光線經(jīng)平面鏡反射滿足入射角與反射角相等(如圖);現(xiàn)象(2);光線從橢圓的一個焦點(diǎn)出發(fā)經(jīng)橢圓反射后通過另一個焦點(diǎn)(如圖).試結(jié)合,上述事實(shí)現(xiàn)象完成下列問題:

(Ⅰ)有一橢圓型臺球桌,長軸長為2a,短軸長為2b.將一放置于焦點(diǎn)處的桌球擊出.經(jīng)過球桌邊緣的反射(假設(shè)球的反射充全符合現(xiàn)象(2)),后第一次返回到該焦點(diǎn)時所經(jīng)過的路程記為S,求S的值(用a,b表示);

(Ⅱ)結(jié)論:橢圓上任點(diǎn)Px0,y0)處的切線的方程為.記橢圓C的方程為C,在直線x4上任一點(diǎn)M向橢圓C引切線,切點(diǎn)分別為AB.求證:直線lAB恒過定點(diǎn):

(Ⅲ)過點(diǎn)T1,0)的直線l(直線l斜率不為0)與橢圓C交于PQ兩點(diǎn),是否存在定點(diǎn)Ss,0),使得直線SPSQ斜率之積為定值,若存在求出S坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案