17.若正數(shù)x,y滿足x+2y-9=0,則$\frac{2}{y}+\frac{1}{x}$的最小值為1.

分析 利用“乘1法”和基本不等式的性質(zhì)即可得出.

解答 解:$\frac{2}{x}+\frac{1}{y}=\frac{1}{9}(2x+y)(\frac{2}{x}+\frac{1}{y})=\frac{1}{9}(\frac{2x}{y}+\frac{2y}{x}+5)≥1$,x=y=3時(shí)取等號(hào).
所以$\frac{2}{x}+\frac{1}{y}$的最小值為1.
故答案為:1

點(diǎn)評(píng) 本題考查了“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)$f(x)=\frac{{3{x^2}}}{{\sqrt{1-x}}}+lg(3x+1)$的定義域是( 。
A.$\left\{x|-\frac{1}{3}<x<1\right\}$B.{x|x<1}C.$\left\{x|x>-\frac{1}{3}\right\}$D.$\left\{x|x>1或x<-\frac{1}{3}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{3{a}^{2}}$=1(a>0)
(1)當(dāng)a=1時(shí),求橢圓的焦點(diǎn)坐標(biāo)及橢圓的離心率;
(2)過(guò)橢圓的右焦點(diǎn)F2的直線與圓C:x2+y2=4a2(常數(shù)a>0)交于A,B兩點(diǎn),求|F2A|•|F2B|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知p:-2≤x≤1,q:(x-a)(x-a-4)>0,若p是q成立的充分不必要條件,則實(shí)數(shù)a的取值范圍是(-∞,-6)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=x-ex的增區(qū)間為( 。
A.(1,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)全集U=R,集合$A=\{x\left|{y=\sqrt{x}}\right.\},B=\{y\left|{y={{log}_2}(x-\frac{1}{2}),x∈[1,\frac{9}{2}]}\right.\}$,則(∁UA)∩B=( 。
A.B.[-1,0)C.$[1,\frac{9}{2}]$D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.化簡(jiǎn)求值.
(1)${(\frac{1}{4})^{-2}}+{({\frac{1}{{6\sqrt{6}}}})^{{-^{\;}}\frac{1}{3}}}+\frac{{\sqrt{3}+\sqrt{2}}}{{\sqrt{3}-\sqrt{2}}}+\frac{1}{2}•{(1.03)^0}•{(-\sqrt{6})^3}$
(2)(lg2)2+lg20×lg5+log92•log43.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P 在橢圓上運(yùn)動(dòng),$|{{{\overrightarrow{PF}}_1}}|×|{\overrightarrow{P{F_2}}}|$ 的最大值為m,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值為n,且m≥2n,則該橢圓的離心率的取值范圍為[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)$f(x)=\left\{\begin{array}{l}0,(x>0)\\ π,(x=0)\\ 1,(x<0)\end{array}\right.$,則f(f(f(π)))=( 。
A.1B.0C.πD.π+1

查看答案和解析>>

同步練習(xí)冊(cè)答案