9.化簡(jiǎn)求值.
(1)${(\frac{1}{4})^{-2}}+{({\frac{1}{{6\sqrt{6}}}})^{{-^{\;}}\frac{1}{3}}}+\frac{{\sqrt{3}+\sqrt{2}}}{{\sqrt{3}-\sqrt{2}}}+\frac{1}{2}•{(1.03)^0}•{(-\sqrt{6})^3}$
(2)(lg2)2+lg20×lg5+log92•log43.

分析 (1)根據(jù)指數(shù)冪的運(yùn)算性質(zhì)化簡(jiǎn)即可,
(2)根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)即可.

解答 解:(1)${(\frac{1}{4})^{-2}}+{({\frac{1}{{6\sqrt{6}}}})^{{-^{\;}}\frac{1}{3}}}+\frac{{\sqrt{3}+\sqrt{2}}}{{\sqrt{3}-\sqrt{2}}}+\frac{1}{2}•{(1.03)^0}•{(-\sqrt{6})^3}$$\begin{array}{l}=16+\sqrt{6}+5+2\sqrt{6}-3\sqrt{6}\\=21\end{array}$
(2)(lg2)2+lg20×lg5+log92•log43
$\begin{array}{l}={(lg2)^2}+(1+lg2)•lg5+\frac{1}{2}{log_3}2•\frac{1}{2}{log_2}3\\=lg2(lg2+lg5)+lg5+\frac{1}{4}\\=lg2+lg5+\frac{1}{4}\\=\frac{5}{4}\end{array}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是指數(shù)和對(duì)數(shù)的算性質(zhì),其中熟練掌握指數(shù)和對(duì)數(shù)的運(yùn)算性質(zhì)公式,是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.$y=\sqrt{x^2}$和$y=\root{3}{x^3}$B.y=|1-x|和$y=\sqrt{{{({x-1})}^2}}$
C.$y=\frac{{{x^2}-1}}{x-1}$和y=x+1D.y=x0和y=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點(diǎn)E,F(xiàn)分別在A1B1,D1C1上,A1E=D1F=4.過點(diǎn)E,F(xiàn)的平面α與此長(zhǎng)方體的面相交,交線圍成一個(gè)正方形.
(Ⅰ)在圖中畫出這個(gè)正方形(保留畫圖痕跡,不用說明畫法和理由)
(Ⅱ)求平面α把該長(zhǎng)方體分成的兩部分中較小部分的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若正數(shù)x,y滿足x+2y-9=0,則$\frac{2}{y}+\frac{1}{x}$的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若tanα=2,則$\frac{sinα+2cosα}{2sinα-cosα}$+cosαsinα等于(  )
A.$\frac{26}{15}$B.$\frac{13}{15}$C.-$\frac{26}{15}$D.-$\frac{13}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)滿足f(x)=-f(x+2),則與f(100)一定相等的是( 。
A.f(1)B.f(2)C.f(3)D.f(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知命題P:直線2x-y=0與雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)沒有公共點(diǎn),命題q:直線x+ny-2n=0與焦點(diǎn)在x軸上的橢圓$\frac{x^2}{16}+\frac{y^2}{m^2}=1({m>0})$恒有公共點(diǎn),若p∨q為真命題,p∧q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知點(diǎn)P(2,-1).
(1)若一條直線經(jīng)過點(diǎn)P,且原點(diǎn)到直線的距離為2,求該直線的一般式方程;
(2)求過點(diǎn)P且與原點(diǎn)距離最大的直線的一般式方程,并求出最大距離是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)$\overrightarrow a,\overrightarrow b,\overrightarrow c$為單位向量,$\overrightarrow a,\overrightarrow b$的夾角為60°,則$(\overrightarrow a+\overrightarrow b+\overrightarrow c)•\overrightarrow c$的最大值為1+$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案