【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點,過點的直線交橢圓于,兩點,且的周長為12.
(Ⅰ)求橢圓的方程
(Ⅱ)過點作斜率為的直線與橢圓交于兩點,,試判斷在軸上是否存在點,使得是以為底邊的等腰三角形若存在,求點橫坐標的取值范圍,若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:(),過原點的兩條直線和分別與交于點、和、,得到平行四邊形.
(1)若,,且為正方形,求該正方形的面積.
(2)若直線的方程為,和關(guān)于軸對稱,上任意一點到和的距離分別為和,證明:.
(3)當為菱形,且圓內(nèi)切于菱形時,求,滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列滿足.
①存在可以生成的數(shù)列是常數(shù)數(shù)列;
②“數(shù)列中存在某一項”是“數(shù)列為有窮數(shù)列”的充要條件;
③若為單調(diào)遞增數(shù)列,則的取值范圍是;
④只要,其中,則一定存在;
其中正確命題的序號為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列中,,,的前項和為,且滿足().
(1)試求數(shù)列的通項公式;
(2)令,是的前項和,證明:;
(3)證明:對任意給定的,均存在,使得時,(2)中的恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項均為正數(shù)的數(shù)列{an}的前n項和Sn滿足S1>1,且(nN*).
(1)求{an}的通項公式;
(2)設(shè)數(shù)列滿足,Tn為數(shù)列{bn}的前n項和,求Tn;
(3)設(shè)*(為正整數(shù)),問是否存在正整數(shù),使得當任意正整數(shù)n>N時恒有Cn>2015成立?若存在,請求出正整數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點到點的距離與它到直線的距離的比值為,設(shè)動點形成的軌跡為曲線..
(1)求曲線的方程;
(2)過點的直線與曲線交于兩點,過點作,垂足為,過點作,垂足為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,為坐標原點,C、D兩點的坐標為,曲線上的動點P滿足.又曲線上的點A、B滿足.
(1)求曲線的方程;
(2)若點A在第一象限,且,求點A的坐標;
(3)求證:原點到直線AB的距離為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列 的前項和為,對一切,點都在函數(shù)的圖象上.
(1)求,歸納數(shù)列的通項公式(不必證明);
(2)將數(shù)列依次按1項、2項、3項、4項循環(huán)地分為,,, ;,,,;,…,分別計算各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,求的值;
(3)設(shè)為數(shù)列的前項積,若不等式對一切都成立,其中,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,且,().
(1)計算,,,,并求數(shù)列的通項公式;
(2)若數(shù)列滿足,求證:數(shù)列是等比數(shù)列;
(3)由數(shù)列的項組成一個新數(shù)列:,,,,,設(shè)為數(shù)列的前項和,試求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com