【題目】已知函數(shù).

1)討論的導(dǎo)數(shù)的單調(diào)性;

2)若有兩個(gè)極值點(diǎn),,求實(shí)數(shù)的取值范圍,并證明.

【答案】(1)上單調(diào)遞減,上單調(diào)遞增;

2)見(jiàn)解析.

【解析】

1)求出,令,對(duì),討論來(lái)求的單調(diào)性;

2)將有兩個(gè)極值點(diǎn)轉(zhuǎn)化為有兩解,繼續(xù)轉(zhuǎn)化為有兩解,構(gòu)造函數(shù),求導(dǎo)為其極小值,可得,即可求得實(shí)數(shù)的取值范圍;另外要證明,不妨設(shè),則,由(1)根據(jù)的單調(diào)性得,通過(guò)變形,轉(zhuǎn)化為證明,進(jìn)一步變形證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究其最小值即可證明.

1)由題意,得.

設(shè),則.

①當(dāng)時(shí),,所以上單調(diào)遞增.

②當(dāng)時(shí),由,得.

當(dāng)時(shí),,上單調(diào)遞減;

當(dāng)時(shí),上單調(diào)遞增.

2)由于有兩個(gè)極值點(diǎn),,即上有兩解,,

,顯然,故等價(jià)于有兩解,,

設(shè),則,

當(dāng)時(shí),,所以單調(diào)遞減,

時(shí),時(shí),;

當(dāng)時(shí),,所以單調(diào)遞減,且時(shí),;

當(dāng)時(shí),,所以單調(diào)遞增,且時(shí),

所以的極小值,有兩解,等價(jià)于,得.

不妨設(shè),則.

據(jù)(1上單調(diào)遞減,在上單調(diào)遞增,

由于,,且,則,

所以,

,

欲證明:,等價(jià)于證明:,

即證明:,只要證明:,

因?yàn)?/span>上單調(diào)遞減,,

所以只要證明:,

由于,所以只要證明:,

即證明:

設(shè),據(jù)(1,

,

所以上單調(diào)遞增,

所以,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,的中點(diǎn),將沿直線翻折成,連結(jié),的中點(diǎn),則在翻折過(guò)程中,下列說(shuō)法中所有正確的是(

A.存在某個(gè)位置,使得

B.翻折過(guò)程中,的長(zhǎng)是定值

C.,則

D.,當(dāng)三棱錐的體積最大時(shí),三棱錐的外接球的表面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】移動(dòng)支付、高鐵、網(wǎng)購(gòu)、共享單車(chē)被稱(chēng)為中國(guó)的新四大發(fā)明”.為了幫助50歲以上的中老年人更快地適應(yīng)移動(dòng)支付”,某機(jī)構(gòu)通過(guò)網(wǎng)絡(luò)組織50歲以上的中老年人學(xué)習(xí)移動(dòng)支付相關(guān)知識(shí).學(xué)習(xí)結(jié)束后,每人都進(jìn)行限時(shí)答卷,得分都在內(nèi).在這些答卷(有大量答卷),隨機(jī)抽出,統(tǒng)計(jì)得分繪出頻率分布直方圖如圖.

(1)求出圖中的值,并求樣本中,答卷成績(jī)?cè)?/span>上的人數(shù);

(2)以樣本的頻率為概率,從參加這次答卷的人群中,隨機(jī)抽取,記成績(jī)?cè)?/span>分以上()的人數(shù)為,的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),函數(shù),,其中為常數(shù),且,令函數(shù)為函數(shù)的積函數(shù).

1)求函數(shù)的表達(dá)式,并求其定義域;

2)當(dāng)時(shí),求函數(shù)的值域

3)是否存在自然數(shù),使得函數(shù)的值域恰好為?若存在,試寫(xiě)出所有滿(mǎn)足條件的自然數(shù)所構(gòu)成的集合;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,點(diǎn)O為對(duì)角線BD的中點(diǎn),點(diǎn)E,F(xiàn)分別為棱PC,PD的中點(diǎn),已知PA⊥AB,PA⊥AD.

(1)求證:直線PB∥平面OEF;

(2)求證:平面OEF⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次數(shù)學(xué)考試中,從甲乙兩個(gè)班各抽取10名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,兩個(gè)班樣本成績(jī)的莖葉圖如圖所示.

1)用樣本估計(jì)總體,若根據(jù)莖葉圖計(jì)算得甲乙兩個(gè)班級(jí)的平均分相同,求的值;

2)從樣本中任意抽取3名學(xué)生的成績(jī),若至少有兩名學(xué)生的成績(jī)相同的概率大于,則該班成績(jī)判斷為可疑.試判斷甲班的成績(jī)是否可疑?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),其中,函數(shù)在點(diǎn)處的切線方程為,其中.

1)求并證明函數(shù)有且僅有一個(gè)零點(diǎn);

2)當(dāng)時(shí),恒成立,求最小的整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,網(wǎng)絡(luò)也已經(jīng)逐漸融入了人們的日常生活,網(wǎng)購(gòu)作為一種新的消費(fèi)方式,因其具有快捷、商品種類(lèi)齊全、性?xún)r(jià)比高等優(yōu)勢(shì)而深受廣大消費(fèi)者認(rèn)可.某網(wǎng)購(gòu)公司統(tǒng)計(jì)了近五年在本公司網(wǎng)購(gòu)的人數(shù),得到如下的相關(guān)數(shù)據(jù)(其中x=1”表示2015年,x=2”表示2016年,依次類(lèi)推;y表示人數(shù))

x

1

2

3

4

5

y(萬(wàn)人)

20

50

100

150

180

1)試根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,并預(yù)測(cè)到哪一年該公司的網(wǎng)購(gòu)人數(shù)能超過(guò)300萬(wàn)人;

2)該公司為了吸引網(wǎng)購(gòu)者,特別推出玩網(wǎng)絡(luò)游戲,送免費(fèi)購(gòu)物券活動(dòng),網(wǎng)購(gòu)者可根據(jù)拋擲骰子的結(jié)果,操控微型遙控車(chē)在方格圖上行進(jìn). 若遙控車(chē)最終停在勝利大本營(yíng),則網(wǎng)購(gòu)者可獲得免費(fèi)購(gòu)物券500元;若遙控車(chē)最終停在失敗大本營(yíng),則網(wǎng)購(gòu)者可獲得免費(fèi)購(gòu)物券200. 已知骰子出現(xiàn)奇數(shù)與偶數(shù)的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、、第20格。遙控車(chē)開(kāi)始在第0格,網(wǎng)購(gòu)者每拋擲一次骰子,遙控車(chē)向前移動(dòng)一次.若擲出奇數(shù),遙控車(chē)向前移動(dòng)一格(從)若擲出偶數(shù)遙控車(chē)向前移動(dòng)兩格(從),直到遙控車(chē)移到第19格勝利大本營(yíng))或第20格(失敗大本營(yíng))時(shí),游戲結(jié)束。設(shè)遙控車(chē)移到第格的概率為,試證明是等比數(shù)列,并求網(wǎng)購(gòu)者參與游戲一次獲得免費(fèi)購(gòu)物券金額的期望值.

附:在線性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的值域;

2)在中,角所對(duì)的邊分別為,,求的值;

3)請(qǐng)敘述余弦定理(寫(xiě)出其中一個(gè)式子即可)并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案