分析 (Ⅰ)由向量式和已知數(shù)據(jù)可得cosB=-cosD,而由余弦定理可得AC2=20-16cosD=52+48cosD,從而可求出cosD=$-\frac{1}{2}$,AC=$2\sqrt{7}$,進(jìn)而得到$sinB=sinD=\frac{\sqrt{3}}{2}$,由三角形的面積公式即可求出四邊形ABCD的面積;
(Ⅱ)由正弦定理可得$2R=\frac{AC}{sinB}$,帶入數(shù)據(jù)即可求出三角形ABC的外接圓半徑R的值;
(Ⅲ)由余弦定理和基本不等式可得PA+PC的一個(gè)范圍,再由三角形的三邊關(guān)系可得.
解答 解:(Ⅰ)∵$3\overrightarrow{AB}•\overrightarrow{AD}+4\overrightarrow{CB}•\overrightarrow{CD}=0$,AB=AD=4,BC=6,CD=2;
∴$3|\overrightarrow{AB}||\overrightarrow{AD}|cos∠BAD+$$4|\overrightarrow{CB}||\overrightarrow{CD}|cos∠BCD$=3•4•4cos∠BAD+4•6•2cos∠BCD=0;
∴cos∠BAD=-cos∠BCD;
∵0<∠BAD<π,0<∠BCD<π;
∴∠BAD+∠BCD=π;
∴B+D=π,cosB=-cosD;
∴由余弦定理得,AC2=AD2+CD2-2AD•CDcosD=20-16cosD;
同理得,AC2=AB2+BC2-2AB•BCcosB=52+48cosD;
聯(lián)立以上兩式得,$cosD=-\frac{1}{2}$,$AC=2\sqrt{7}$,∴$sinD=\frac{\sqrt{3}}{2}$;
∴${S}_{四邊形ABCD}=\frac{1}{2}AB•BC•sinB+\frac{1}{2}AD•CD•sinD$
=$\frac{1}{2}×4×6×\frac{\sqrt{3}}{2}+\frac{1}{2}×4×2×\frac{\sqrt{3}}{2}$
=$8\sqrt{3}$;
(Ⅱ)由正弦定理得,$2R=\frac{AC}{sinB}=\frac{2\sqrt{7}}{\frac{\sqrt{3}}{2}}=\frac{4\sqrt{21}}{3}$;
∴$R=\frac{2\sqrt{21}}{3}$;
(Ⅲ)在△APC中,$AC=2\sqrt{7}$,∠APC=60°,由余弦定理得:
AC2=28=PA2+PC2-PA•PC
=(PA+PC)2-3PA•PC
$≥(PA+PC)^{2}-3(\frac{PA+PC}{2})^{2}$=$\frac{(PA+PC)^{2}}{4}$;
∴(PA+PC)2≤16×7;
∴$0<PA+PC≤4\sqrt{7}$;
又PA+PC$>AC=2\sqrt{7}$;
∴PA+PC的取值范圍為$(2\sqrt{7},4\sqrt{7}]$.
點(diǎn)評(píng) 考查向量數(shù)量積的計(jì)算公式,正余弦定理,互補(bǔ)兩角的余弦值互為相反數(shù),正弦值相等,以及基本不等式的應(yīng)用,三角形的面積公式,三角形的兩邊之和大于第三邊定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(-17)<f(19)<f(40) | B. | f(40)<f(19)<f(-17) | C. | f(19)<f(40)<f(-17) | D. | f(-17)<f(40)<f(19) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{3}$-y2=1 | B. | $\frac{{y}^{2}}{3}$-x2=1 | C. | x2-$\frac{{y}^{2}}{3}$=1 | D. | y2-$\frac{{x}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | $\sqrt{6}$ | D. | -$\sqrt{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com