【題目】銷售甲乙兩種商品所得利潤(rùn)分別是(單位:萬(wàn)元)(單位:萬(wàn)元),它們與投入資金(單位:萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式.今將10萬(wàn)元資金投入經(jīng)營(yíng)甲乙兩種商品,其中對(duì)甲種商品投資(單位:萬(wàn)元).

1)試建立總利潤(rùn)(單位:萬(wàn)元)關(guān)于的函數(shù)關(guān)系式,并寫出定義域;

2)如何投資經(jīng)營(yíng)甲乙兩種商品,才能使得總利潤(rùn)最大,并求出最大總利潤(rùn).

【答案】1,定義域?yàn)?/span>;(2)甲商品投入萬(wàn)元,乙商品投入萬(wàn)元時(shí),總利潤(rùn)最大為萬(wàn)元.

【解析】

1)根據(jù)題意,可以求出對(duì)乙種商品投資金額,最后寫出函數(shù)的關(guān)系式及定義域;

2)令,根據(jù)二次函數(shù)的單調(diào)性求出最大值即可.

1)因?yàn)?/span>10萬(wàn)元資金投入經(jīng)營(yíng)甲乙兩種商品,對(duì)甲種商品投資(單位:萬(wàn)元),所以對(duì)乙兩種商品投資(單位:萬(wàn)元),于是有,定義域?yàn)?/span>;

2)令

因?yàn)槎x域?yàn)?/span>,所以,

所以

當(dāng)時(shí),函數(shù)為單調(diào)遞增函數(shù);

當(dāng)時(shí),函數(shù)為單調(diào)遞減函數(shù).

所以當(dāng)時(shí),即時(shí),總利潤(rùn)最大為萬(wàn)元.

即甲商品投入萬(wàn)元,乙商品投入萬(wàn)元時(shí),總利潤(rùn)最大為萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐,底面是邊長(zhǎng)為的菱形,側(cè)面底面,, , 中點(diǎn),點(diǎn)在側(cè)棱.

求證: ;

中點(diǎn),求二面角的余弦值;

是否存在,使平面?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過(guò)一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:

為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn),直線交橢圓于不同的兩點(diǎn),設(shè)線段的中點(diǎn)為

1求橢圓的方程;

2當(dāng)的面積為其中為坐標(biāo)原點(diǎn)時(shí),試問(wèn):在坐標(biāo)平面上是否存在兩個(gè)定點(diǎn),使得當(dāng)直線運(yùn)動(dòng)時(shí),為定值?若存在,求出點(diǎn)的坐標(biāo)和定值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn),兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,(注:利潤(rùn)與投資單位:萬(wàn)元)

1)分別將,兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系,并寫出它們的函數(shù)關(guān)系式;

2)該企業(yè)已籌集到10萬(wàn)元資金,全部投入到,兩種產(chǎn)品的生產(chǎn),怎樣分配資金,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)約為多少萬(wàn)元(精確到1萬(wàn)元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象為不間斷的曲線,定義域?yàn)?/span>,規(guī)定:

①如果對(duì)于任意,都有,則稱函數(shù)是凹函數(shù).

②如果對(duì)于任意,都有,則稱函數(shù)是凸函數(shù).

1)若函數(shù)()是凹函數(shù),試寫出實(shí)數(shù)的取值范圍;(直接寫出結(jié)果,無(wú)需證明);

2)判斷函數(shù)是凹函數(shù)還是凸函數(shù),并加以證明;

3)若對(duì)任意的,,試證明存在,使.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為實(shí)數(shù)).

(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;

(2)求在區(qū)間上的最小值;

(3)若存在兩個(gè)不等實(shí)數(shù),使方程成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=logax+2),gx)=loga2x)(a0,a≠1).

1)求函數(shù)fx)﹣gx)的定義域;

2)判斷fx)﹣gx)的奇偶性并證明;

3)求fx)﹣gx)>0x取值范圍,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,直線被橢圓截得的線段長(zhǎng)為.

(1)求橢圓的方程;

(2)過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn)(不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線軸分別交于兩點(diǎn).

①設(shè)直線斜率分別為,證明存在常數(shù)使得,并求出的值;

②求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案