14.函數(shù)g(x)=sin22x的單調(diào)遞增區(qū)間是( 。
A.[$\frac{kπ}{2}$,$\frac{kπ}{2}$+$\frac{π}{4}$](k∈Z)B.[kπ,kπ+$\frac{π}{4}$](k∈Z)
C.[$\frac{kπ}{2}$+$\frac{π}{4}$,$\frac{kπ}{2}$+$\frac{π}{2}$](k∈Z)D.[kπ+$\frac{π}{4}$,kπ+$\frac{π}{2}$](k∈Z)

分析 通過半角公式得到g(x)的遞增區(qū)間即y=cos4x的遞減區(qū)間,根據(jù)余弦函數(shù)的性質(zhì)求出即可.

解答 解:g(x)=sin22x=$\frac{1-cos4x}{2}$=$\frac{1}{2}$-$\frac{1}{2}$cos4x,
則g(x)的遞增區(qū)間即y=cos4x的遞減區(qū)間,
由2kπ≤4x≤2kπ+π,解得:$\frac{kπ}{2}$≤x≤$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z,
故選:A.

點評 本題考查了函數(shù)的單調(diào)性問題,考查三角函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體的三視圖,則幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a,b是兩個不相等的正數(shù),且alna+b=blnb+a,則( 。
A.(a-1)(b-1)>0B.0<a+b<2C.ab>1D.0<ab<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a>b,則下列不等式成立的是( 。
A.$\frac{1}{a}$<$\frac{1}$B.2-a<2-bC.a2>b2D.ac≥bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}}$)的圖象經(jīng)過三點(0,$\frac{1}{8}}$),(${\frac{5π}{12}$,0),(${\frac{11π}{12}$,0),且在區(qū)間($\frac{5π}{12}$,$\frac{11π}{12}}$)內(nèi)有唯一的最值,且為最小值.
(1)求出函數(shù)f(x)=Asin(ωx+φ)的解析式;
(2)在△ABC中,a,b,c分別是角A、B、C的對邊,若f($\frac{A}{2}}$)=$\frac{1}{4}$且bc=1,b+c=3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,三棱柱ABC-A1B1C1的各棱長為2,側(cè)面BCC1B1⊥底面ABC,∠B${\;}_{{1}_{\;}}$BC=60°,P為A1C1的中點.
(1)求證:BC⊥AB1;
(2)求二面角C1-B1C-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知△ABC中,角A,B,C的對邊分別是a,b,c,且2cos2$\frac{B}{2}$=$\sqrt{3}$sinB,a=3c.
(1)求角B的大小和tanC的值;
(2)若b=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示的多面體中,已知菱形ABCD和直角梯形ACEF所在的平面互相垂直,其中∠FAC為直角,∠ABC=60°,EF∥AC,EF=$\frac{1}{2}$AB=1,F(xiàn)A=$\sqrt{3}$.
(1)求證:DE⊥平面BEF;
(2)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y≤0}\\{x-1≥0}\end{array}\right.$,則z=x+2y的最大值為( 。
A.3B.$\frac{9}{2}$C.4D.5

查看答案和解析>>

同步練習(xí)冊答案