【題目】已知橢圓的兩個焦點分別為,離心率為,過的直線與橢圓交于兩點,且的周長為

1)求橢圓的方程;

2)若直線與橢圓分別交于兩點,且,試問點到直線的距離是否為定值,證明你的結(jié)論.

【答案】(1);(2)為定值,證明見解析

【解析】

1)由周長可求得,利用離心率求得,從而,從而得到橢圓方程;(2)直線方程與橢圓方程聯(lián)立,可得韋達定理的形式;利用垂直關(guān)系可構(gòu)造方程,代入韋達定理整理可得;利用點到直線距離公式表示出所求距離,化簡可得結(jié)果.

(1)由橢圓定義知:的周長為:

由橢圓離心率: ,

橢圓的方程:

(2)由題意,直線斜率存在,直線的方程為:

設(shè),

聯(lián)立方程,消去得:

由已知,且,

,即得:

即:

,整理得:,滿足

到直線的距離:為定值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,且過點P。

(1)求橢圓的標(biāo)準方程;

(2)已知斜率為1的直線l過橢圓的右焦點F交橢圓于A.B兩點,求弦AB的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,為等邊三角形, ,為邊的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某公園內(nèi)有兩條道路,,現(xiàn)計劃在上選擇一點,新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知,

(1)若綠化區(qū)域的面積為1,求道路的長度;

(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設(shè)),當(dāng)為何值時,該計劃所需總費用最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在棱長為2的正方體,分別在棱,滿足,.

(1)試確定兩點的位置.

(2)求二面角大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點在平行于軸的直線上,且軸的交點為,動點滿足平行于軸,且.

1)求出點的軌跡方程.

2)設(shè)點,,求的最小值,并寫出此時點的坐標(biāo).

3)過點的直線與點的軌跡交于.兩點,求證.兩點的橫坐標(biāo)乘積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C過點 ,兩個焦點

(1)求橢圓C的標(biāo)準方程;

(2)設(shè)直線l交橢圓C于A,B兩點,且|AB|=6,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓關(guān)于直線對稱,圓心C在第二象限,半徑為

(1)求圓C的方程.

(2)是否存在直線l與圓C相切,且在x軸、y軸上的截距相等?若存在,寫出滿足條件的直線條數(shù)(不要求過程);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案