已知橢圓方程為,過右焦點(diǎn)斜率為1的直線到原點(diǎn)的距離為.

(1)求橢圓方程.

(2)已知為橢圓的左右兩個(gè)頂點(diǎn),為橢圓在第一象限內(nèi)的一點(diǎn),為過點(diǎn)且垂直軸的直線,點(diǎn)為直線與直線的交點(diǎn),點(diǎn)為以為直徑的圓與直線的一個(gè)交點(diǎn),求證:三點(diǎn)共線.

 

【答案】

(1);(2)詳見解析.

【解析】

試題分析:(1)由過右焦點(diǎn)斜率為1的直線到原點(diǎn)的距離為可以得到右焦點(diǎn)坐標(biāo),即的值.再由公式可得橢圓方程.此處注意因?yàn)槭怯医裹c(diǎn),即焦點(diǎn)在軸上,從而得到對(duì)應(yīng)的分母1即為;(2)由點(diǎn)坐標(biāo)設(shè)出直線的點(diǎn)斜式方程,聯(lián)立橢圓方程求出的坐標(biāo).易知直線的方程,所以易求得點(diǎn)坐標(biāo),由圓的性質(zhì)知,則只要就有直線重合,即三點(diǎn)共線.因?yàn)辄c(diǎn)的坐標(biāo)已求得,可通過向量數(shù)量積予以證明.注意本題如選擇求點(diǎn)坐標(biāo)則將較為繁瑣,增加了解題的計(jì)算量,這里合理利用圓的直徑對(duì)應(yīng)的圓周角是直角這一性質(zhì),簡化了運(yùn)算.

試題解析:(1)設(shè)右焦點(diǎn)為,則過右焦點(diǎn)斜率為1的直線方程為:    1分

則原點(diǎn)到直線的距離                         3分

方程                                                    4分

(2)點(diǎn)坐標(biāo)為                                              5分

設(shè)直線方程為:,設(shè)點(diǎn)坐標(biāo)為

得:                     6分

       7分    9分

    10分

由圓的性質(zhì)得:

點(diǎn)的橫坐標(biāo)為    點(diǎn)的坐標(biāo)為    11分

     11分           13分

,又三點(diǎn)共線                14分 

考點(diǎn):1.直線與圓錐曲線的位置關(guān)系;2.直線的方程;3.平面向量的應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓方程為
x2
4
+
y2
3
=1
,右焦點(diǎn)F(1,0),準(zhǔn)線上一點(diǎn)C(4,3
3
)
,過點(diǎn)F的直線l交橢圓與A、B兩點(diǎn).
(1)若直線l的傾斜角為
2
3
π
,A點(diǎn)縱坐標(biāo)為正數(shù),求S△CAF;
(2)證明直線AC和直線BC斜率之和為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河池模擬)已知橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0),O為原點(diǎn),F(xiàn)為右焦點(diǎn),點(diǎn)M是橢圓右準(zhǔn)線l上(除去與x軸的交點(diǎn))的動(dòng)點(diǎn),過F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,則線段ON的長為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省八校高三第二次聯(lián)考數(shù)學(xué)(理) 題型:單選題

已知橢圓方程為,O為原點(diǎn),F(xiàn)為右焦點(diǎn),點(diǎn)M是橢圓右準(zhǔn)線上(除去與軸的交點(diǎn))的動(dòng)點(diǎn),過F作OM的垂線與以O(shè)M為直線的圓交于點(diǎn)N,則線段ON的長為             (   )

A.B.C.D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆福建省、二中高二上學(xué)期期末聯(lián)考理科數(shù)學(xué)卷(解析版) 題型:解答題

已知橢圓方程為,左、右焦點(diǎn)分別是,若橢圓上的點(diǎn)的距離和等于

(Ⅰ)寫出橢圓的方程和焦點(diǎn)坐標(biāo);

(Ⅱ)設(shè)點(diǎn)是橢圓的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;

(Ⅲ)直線過定點(diǎn),且與橢圓交于不同的兩點(diǎn),若為銳角(為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案