已知是拋物線的焦點(diǎn),準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)在拋物線上,且,則等于(     )
A.B.C.D.
C

試題分析:
過(guò)N作NE垂直于準(zhǔn)線與E,由拋物線的定義得|NE|=|NF|;在RT△ENM中求出∠EMN=30°.即可得到結(jié)論.解:過(guò)N作NE垂直于準(zhǔn)線與E.

由拋物線的定義得:|NE|=|NF|.
在RT△ENM中因?yàn)閨EN|=|NF|= |MN|.所以:∠EMN=30°.故:∠NMF=90°-∠EMN=60°.故選C
點(diǎn)評(píng):本題主要考查拋物線的簡(jiǎn)單性質(zhì).解決問(wèn)題的關(guān)鍵在于利用拋物線的定義得到|NE|=|NF|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)分別為雙曲線的左右焦點(diǎn),點(diǎn)P在雙曲線的右支上,且到直線的距離等于雙曲線的實(shí)軸長(zhǎng),則該雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正方向建立平面直角坐標(biāo)系,直線的參數(shù)方程是:(為參數(shù)).
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,若,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是拋物線的焦點(diǎn),上的兩個(gè)點(diǎn),線段AB的中點(diǎn)為,則的面積等于              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是雙曲線上一點(diǎn),、是其左、右焦點(diǎn),的三邊長(zhǎng)成等差數(shù)列,且,則雙曲線的離心率等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的離心率為:2.(1)過(guò)點(diǎn)C(-1,0)且以向量為方向向量的直線交橢圓于不同兩點(diǎn)A、B,若,則當(dāng)△OAB的面積最大時(shí),求橢圓的方程。
(2)設(shè)M,N為橢圓上的兩個(gè)動(dòng)點(diǎn),,過(guò)原點(diǎn)O作直線MN的垂線OD,垂足為D,求點(diǎn)D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)A、B為雙曲線同一條漸近線上的兩個(gè)不同的點(diǎn),已知向量=(1,0),,則雙曲線的離心率e等于
A.2    B.    C.2或  D. 2或

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩定點(diǎn)E(-2,0),F(2,0),動(dòng)點(diǎn)P滿足,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M滿足,點(diǎn)M的軌跡為C.
(1)求曲線C的方程
(2)過(guò)點(diǎn)D(0,-2)作直線與曲線C交于A、B兩點(diǎn),點(diǎn)N滿足
(O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

存在兩條直線與雙曲線相交于ABCD四點(diǎn),若四邊形ABCD是正方形,則雙曲線的離心率的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案