已知是雙曲線上一點(diǎn),、是其左、右焦點(diǎn),的三邊長成等差數(shù)列,且,則雙曲線的離心率等于
A.B.C.D.
D

試題分析:由題意,可根據(jù)雙曲線的定義及題設(shè)中三邊長度成等差數(shù)列得出方程|PF1|-|PF2|=4與2|PF1|=|PF2|+2c,由此兩方程可解出|PF1|=2c-4,|PF2|=2c-8,再由∠F1 P F2=120°,由余弦定理建立關(guān)于c的方程,解出c的值,即可由公式求出離心率的值. 解:由題,不妨令點(diǎn)P在右支上,如圖,則有,|PF1|-|PF2|=4 ①,2|PF1|=|PF2|+2c  ②,由①②解得|PF1|=2c-4,|PF2|=2c-8,又∠F1 P F2=120°,由余弦定理得,4c2=(2c-4)2+(2c-8)2+(2c-4)×(2c-8),解得,c=7或c=2(舍),又a=2,故e=故答案為 D
點(diǎn)評(píng):本題考查雙曲線的簡單性質(zhì)及等差數(shù)列的性質(zhì),解題的關(guān)鍵是熟練掌握基礎(chǔ)知識(shí)且能靈活選用基礎(chǔ)知識(shí)建立方程求參數(shù),本題考查了方程的思想及轉(zhuǎn)化的思想
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別為雙曲線a>0,b>0)的左、右焦點(diǎn),為雙曲線左支上的任意一點(diǎn),若的最小值為,則雙曲線離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)P是以F1、F2為焦點(diǎn)的橢圓上一點(diǎn),且,則該橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線,直線與該雙曲線只有一個(gè)公共點(diǎn),
k =                .(寫出所有可能的取值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的離心率,過雙曲線的左焦點(diǎn)的兩條切線,切點(diǎn)分別為、的大小等于(    )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是拋物線的焦點(diǎn),準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)在拋物線上,且,則等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2 = 16x的準(zhǔn)線方程為(     )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)軸上,準(zhǔn)線與圓相切.

(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點(diǎn),命題P:“若直線過定點(diǎn),則”,請(qǐng)判斷命題P的真假,并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為則拋物線的方程是(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案