A. | $C_{13}^3$ | B. | $C_{10}^4$ | ||
C. | $C_{14}^4$ | D. | $C_{10}^1C_9^1C_8^1C_7^1$ |
分析 通項(xiàng)如Maibjckdl,其中i,j,k,l為自然數(shù).i+j+k+l=10,可得:(i+1)+(j+1)+(k+1)+(l+1)=14.因此問題轉(zhuǎn)化為要求x+y+z+t=14的正整數(shù)解的個(gè)數(shù).轉(zhuǎn)化為:有14個(gè)球,13個(gè)空隙,在這些空隙中插入三個(gè)擋板,每一種插板的方式對(duì)應(yīng)一組正整數(shù)解,反之,一組正整數(shù)解對(duì)應(yīng)一種插板的方式,即可得出.
解答 解:通項(xiàng)如Maibjckdl,其中i,j,k,l為自然數(shù).i+j+k+l=10,可得:(i+1)+(j+1)+(k+1)+(l+1)=14.因此問題轉(zhuǎn)化為要求x+y+z+t=14的正整數(shù)解的個(gè)數(shù).
轉(zhuǎn)化為:有14個(gè)球,13個(gè)空隙,在這些空隙中插入三個(gè)擋板,每一種插板的方式對(duì)應(yīng)一組正整數(shù)解,反之,一組正整數(shù)解對(duì)應(yīng)一種插板的方式,因此共有${∁}_{13}^{3}$ 種.
故選:A.
點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的性質(zhì)及其應(yīng)用、排列組合的性質(zhì)及其應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-{e^{\frac{π}{2}}}$ | B. | ${e^{\frac{π}{2}}}$ | C. | 0 | D. | -e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com