分析 (1)由a1=$\frac{1}{2}$,且前n項(xiàng)和為Sn滿足Sn=n2an(n∈N*).令n=2,可得:$\frac{1}{2}+{a}_{2}$=4a2,解得a2=$\frac{1}{6}$,同理可得:a3,a4.可得:an=$\frac{1}{n(n+1)}$.
(2)利用an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,可得數(shù)列{an}的前n項(xiàng)和為Sn.即可證明.
解答 1)解:∵a1=$\frac{1}{2}$,且前n項(xiàng)和為Sn滿足Sn=n2an(n∈N*).
令n=2,可得:$\frac{1}{2}+{a}_{2}$=4a2,解得a2=$\frac{1}{6}$,同理可得:a3=$\frac{1}{12}$,a4=$\frac{1}{20}$.
可得:an=$\frac{1}{n(n+1)}$.
(2)證明:∵an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴數(shù)列{an}的前n項(xiàng)和為Sn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$<1.
即Sn<1.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、“裂項(xiàng)求和”方法、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $\frac{9}{20}$ | D. | $\frac{19}{20}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年廣東清遠(yuǎn)三中高一上學(xué)期月考一數(shù)學(xué)試卷(解析版) 題型:解答題
已知集合
(1)若 ,求的值;
(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-4i | B. | 1+4i | C. | -1+4i | D. | -1-4i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S=S+$\frac{i+1}{i}$,i≥100? | B. | S=S+$\frac{i+1}{i}$,i≥101? | C. | S=S+$\frac{i}{i-1}$,i≥100? | D. | S=S+$\frac{i}{i-1}$,i≥101? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=$\frac{1}{(2n+1)(2n+2)}$ | B. | an=$\frac{1}{(2n-1)(n+1)}$ | C. | an=$\frac{1}{n(2n+1)}$ | D. | an=$\frac{1}{(2n-1)(2n+1)}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com