由坐標(biāo)原點(diǎn)O向函數(shù)y=x3-3x2的圖象W引切線(xiàn)l1,切點(diǎn)為P1(x1,y1)(P1,O不重合),再由點(diǎn)P1的切線(xiàn)l2,切點(diǎn)為P2(x2,y2)(P1,P2不重合),如此繼續(xù)下去得到點(diǎn)列{Pn(xn,yn)}

(1)

求x1的值;

(2)

求xn與xn+1滿(mǎn)足的關(guān)系式;

(3)

求數(shù)列{xn}的通項(xiàng)公式

答案:
解析:

(1)

解:,∴

過(guò)點(diǎn)的切線(xiàn)的方程為

,

過(guò)點(diǎn),

,∴

不重合,

--------------5分

(2)

解:過(guò)點(diǎn)的切線(xiàn)的方程為

過(guò)點(diǎn),

,

整理得

由已知得,

---------------10分

(3)

解:,

是以為首項(xiàng),為公比的等比數(shù)列,

.---------14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由坐標(biāo)原點(diǎn)O向函數(shù)y=x3-3x2的圖象W引切線(xiàn)l1,切點(diǎn)為P1(x1,y1)(P1,O不重合),再由點(diǎn)P1引W的切線(xiàn)l2,切點(diǎn)為P2(x2,y2)(P1,P2不重合),…,如此繼續(xù)下去得到點(diǎn)列{Pn(xn,yn)}.
(Ⅰ)求x1的值;
(Ⅱ)求xn與xn+1滿(mǎn)足的關(guān)系式;
(Ⅲ)求數(shù)列{xn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由坐標(biāo)原點(diǎn)O向函數(shù)y=x3 -3x2的圖象W引切線(xiàn)l1,切點(diǎn)P1(x1,y1) (P1,O不重合),再由點(diǎn)P1引W的切線(xiàn)l2,切點(diǎn)為P2(x2,y2) (P1, P2不重合),…,如此繼續(xù)下去得到點(diǎn)列{Pn(xn,yn)}.

(1)求x1的值;

(2)求xnxn+1滿(mǎn)足的關(guān)系式;

(3)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006-2007學(xué)年北京市崇文區(qū)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

由坐標(biāo)原點(diǎn)O向函數(shù)y=x3-3x2的圖象W引切線(xiàn)l1,切點(diǎn)為P1(x1,y1)(P1,O不重合),再由點(diǎn)P1引W的切線(xiàn)l2,切點(diǎn)為P2(x2,y2)(P1,P2不重合),…,如此繼續(xù)下去得到點(diǎn)列{Pn(xn,yn)}.
(Ⅰ)求x1的值;
(Ⅱ)求xn與xn+1滿(mǎn)足的關(guān)系式;
(Ⅲ)求數(shù)列{xn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006-2007學(xué)年北京市崇文區(qū)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

由坐標(biāo)原點(diǎn)O向函數(shù)y=x3-3x2的圖象W引切線(xiàn)l1,切點(diǎn)為P1(x1,y1)(P1,O不重合),再由點(diǎn)P1引W的切線(xiàn)l2,切點(diǎn)為P2(x2,y2)(P1,P2不重合),…,如此繼續(xù)下去得到點(diǎn)列{Pn(xn,yn)}.
(Ⅰ)求x1的值;
(Ⅱ)求xn與xn+1滿(mǎn)足的關(guān)系式;
(Ⅲ)求數(shù)列{xn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案