1.已知等差數(shù)列{an}的公差是1,且a1,a3,a7成等比數(shù)列,則a5=( 。
A.4B.5C.6D.8

分析 根據(jù)等差數(shù)列的通項(xiàng)公式、等比中項(xiàng)的性質(zhì)列出方程,化簡(jiǎn)后求出a1,由等差數(shù)列的通項(xiàng)公式求出a5

解答 解:∵差數(shù)列{an}的公差是1,且a1,a3,a7成等比數(shù)列,
∴${{a}_{3}}^{2}={a}_{1}•{a}_{7}$,則${{(a}_{1}+2)}^{2}={a}_{1}•({a}_{1}+6)$,
化簡(jiǎn)得,a1=2,
∴a5=a1+4=6,
故選:C.

點(diǎn)評(píng) 本題考查等差、等比數(shù)列的通項(xiàng)公式,等比中項(xiàng)的性質(zhì),以及方程思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.矩形ABCD滿足AB=2,AD=1,點(diǎn)A、B分別在射線OM,ON上運(yùn)動(dòng),∠MON為直角,當(dāng)C到點(diǎn)O的距離最大時(shí),∠ABO的大小為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知線性回歸方程$\widehat{y}$=3x+0.3,則對(duì)應(yīng)于點(diǎn)(2,6.4)的殘差為0.1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=2sin(x-$\frac{π}{3}$)cosx+sinx(cosx+$\sqrt{3}$sinx),x∈R.
(Ⅰ)若α∈(-$\frac{π}{2}$,0),且cosα=$\frac{1}{3}$,求f($\frac{α}{2}$)的值;
(Ⅱ)已知△ABC的角A,B,C的對(duì)邊分別為a,b,c,若f(A)=$\sqrt{3}$,a=4,求△ABC的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)曲線y=$\frac{2}{x}$在點(diǎn)(2,1)處的切線與直線ax-y+1=0垂直,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知$\overline z$=$\frac{i}{1-i}$是復(fù)數(shù)z的共軛復(fù)數(shù),則z=( 。
A.-$\frac{1}{2}$-$\frac{1}{2}$iB.-$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.$\frac{1}{2}$+$\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=|ex-1|,a>0>b,f(a)=f(b),則b(ea-2)的最大值為( 。
A.$\frac{1}{e}$B.1C.2D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.將函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的圖象分別向左、右平移φ(φ>0)個(gè)單位所得圖象恰好重合,則φ的最小值為(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列結(jié)論正確的個(gè)數(shù)是( 。
①命題“所有的四邊形都是矩形”是特稱命題;
②命題“?x∈R,x2+2<0”是全稱命題;
③若p:?x∈R,x2+4x+4≤0,則q:?x∈R,x2+4x+4≤0是全稱命題.
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案