19.已知函數(shù)$f(x)=\left\{\begin{array}{l}1+{log_5}x,x≥1\\ 2x-1,x<1\end{array}\right.$若f[f(0)+m]=2,則m等于( 。
A.3B.4C.5D.6

分析 由函數(shù)$f(x)=\left\{\begin{array}{l}1+{log_5}x,x≥1\\ 2x-1,x<1\end{array}\right.$,f[f(0)+m]=2,構(gòu)造關(guān)于m的方程,解得答案.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}1+{log_5}x,x≥1\\ 2x-1,x<1\end{array}\right.$,
若f[f(0)+m]=2,
則f(0)+m=5,
即-1+m=5,
解得:m=6,
故選:D

點(diǎn)評 本題考查的知識點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)求值,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知定義域為R的函數(shù)f(x),對任意的x∈R,均有f(x+1)=f(x-1),且x∈(-1,1]時,有f(x)=$\left\{{\begin{array}{l}{{x^2}+2,x∈[{0,1}]}\\{2-{x^2},x∈({-1,0})}\end{array}}$,則方程f(f(x))=3在區(qū)間[-3,3]上的所有實根之和為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若曲線y=x3的切線方程為y=kx+2,則k=( 。
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)集合A={x|x=2k-1,k∈Z},B={x|x=2k+1,k∈N,且k<3},則A∩B={1,3,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若集合A={-1,0,1,2},B={y|y=2x+1,x∈A},則A∪B中元素的個數(shù)是( 。
A.4B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)$f(x)=\frac{1}{2}ln(x+\frac{1}{4})$,$g(x)=ln(2x-\frac{1}{2}+t)$,若f(x)≤g(x)在區(qū)間[0,1]上恒成立,則( 。
A.實數(shù)t有最小值1B.實數(shù)t有最大值1C.實數(shù)t有最小值$\frac{1}{2}$D.實數(shù)t有最大值$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式${log_{\frac{1}{3}}}(x-1)>{log_{\frac{1}{3}}}(a-x)$;
(3)求函數(shù)g(x)=|logax-1|的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知集合A={1,2,3,4},B={1,2},則滿足條件B⊆C⊆A的集合C的個數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在圓x2+y2=4內(nèi)隨機(jī)取一點(diǎn)P(x0,y0),則${({x_0}-1)^2}+y_0^2≤1$的概率為$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案