如圖所示,橢圓
x2
a2
+
y2
b2
=1(a>b>0)與過點A(2,0)、B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=
3
2
,則橢圓方程是
 
考點:橢圓的標(biāo)準(zhǔn)方程,橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由a2+4b2-4=0,
a2-b2
a2
=
3
4
,由此能求出橢圓方程.
解答: 解:過A、B的直線方程為
x
2
+y=1.由題意得有唯一解,
∴(b2+
1
4
a2)x2-a2x+a2-a2b2=0有唯一解,
所以△=a2b2(a2+4b2-4)=0(ab≠0),
故a2+4b2-4=0.
又因為e=
3
2
,即
a2-b2
a2
=
3
4

所以a2=4b2.從而a2=2,b2=
1
2

故所求的橢圓方程為
x2
2
+2y2=1.
故答案為:
x2
2
+2y2=1.
點評:本題考查橢圓方程的求法,是基礎(chǔ)題,解題時要注意橢圓注意的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-x+2alnx有兩個極值點x1,x2且x1<x2
(Ⅰ)求實數(shù)a的取值范圍,并寫出函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)判斷方程:f(x)=(a+1)x根的個數(shù)并說明理由;
(Ⅲ)利用消元法表示出函數(shù)f(x2),利用導(dǎo)數(shù)研究函數(shù)f(x2)的單調(diào)性,即可證明不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)y=f(x)過原點,f(-1)=-4,且滿足f(x)≤6x+2,數(shù)列{an}滿足a1=
1
3
,an+1=f(an
(1)確定函數(shù)y=f(x)的解析式;
(2)證明:an+1>an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(2x-x2)ex,給出以下四個結(jié)論:
①f(x)>0的解集是{x|0<x<2};
②f(-
2
)是極小值,f(
2
)是極大值;
③f(x)沒有最小值,也沒有最大值;
④f(x)有最大值,沒有最小值.
其中判斷正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,已知a2+a7=9,則3a4+a6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x和g(x)=logax互為反函數(shù),則g(
1
2
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若[a]表示不超過實數(shù)a的最大整數(shù),則方程[tanx]=2sin2x的解是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=|x-1|+|x-2|+|x-3|+…+|x-20|,1≤x≤20,則f(1)=
 
,f(5)=
 
,f(20)=
 
,當(dāng)x=
 
時,f(x)最小,最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+2x-1的零點所在的大致區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

同步練習(xí)冊答案