14.已知函數(shù)$f(x)=sin(\frac{π}{3}x+φ)(|φ|<\frac{π}{2})$的圖象關(guān)于直線x=1對稱,把f(x)的圖象向右平移3個單位長度后,所得圖象對應(yīng)的函數(shù)解析式為(  )
A.y=sin($\frac{π}{3}$x+$\frac{π}{6}$)B.y=sin($\frac{π}{3}$x-$\frac{π}{6}$)C.y=cos($\frac{π}{3}$x+$\frac{π}{6}$)D.y=sin($\frac{π}{3}$x-$\frac{5π}{6}$)

分析 由已知利用正弦函數(shù)的圖象和性質(zhì)可求sin($\frac{π}{3}$+φ)=1,結(jié)合范圍|φ|<$\frac{π}{2}$可求φ的值,進而利用三角函數(shù)平移變換規(guī)律即可得解.

解答 解:∵函數(shù)$f(x)=sin(\frac{π}{3}x+φ)(|φ|<\frac{π}{2})$的圖象關(guān)于直線x=1對稱,
∴可得:sin($\frac{π}{3}$+φ)=1,
∴$\frac{π}{3}$+φ=2kπ+$\frac{π}{2}$,k∈Z,解得:φ=2kπ+$\frac{π}{6}$,k∈Z,
∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$,可得:f(x)=sin($\frac{π}{3}$x+$\frac{π}{6}$),
∴把f(x)的圖象向右平移3個單位長度后,所得圖象對應(yīng)的函數(shù)解析式為:y=sin[$\frac{π}{3}$(x-3)+$\frac{π}{6}$]=sin($\frac{π}{3}$x-$\frac{5π}{6}$).
故選:D.

點評 本題主要考查了由正弦函數(shù)的圖象和性質(zhì),y=Asin(ωx+φ)的部分圖象確定其解析式,三角函數(shù)平移變換規(guī)律的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,$AC=\sqrt{7},BC=2,B=60°$,則BC邊上的高為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{3\sqrt{3}}}{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=|x|-2的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知直線l1:ax+2y+6=0和直線${l_2}:x+(a-1)y+{a^2}-1=0$.當(dāng)l1∥l2時,求a的值.
(2)已知點P(2,-1),求過P點且與原點距離最大的直線l的方程,并求出最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若實數(shù)a,b滿足$\frac{1}{a}+\frac{2}=2\sqrt{ab}$,則ab的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知實數(shù)x,y滿足$\left\{\begin{array}{l}y-1≥0\\ y-1≤2(x-1)\\ x+y-5≤0\end{array}\right.$,目標(biāo)函數(shù)z=x-y的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)A={x|x2+ax+a=0},其中a為常數(shù).
(1)若a=1,求A;
(2)a>0是A=∅的充分條件還是必要條件?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=ax+sinx+cosx.若函數(shù)f(x)的圖象上存在不同的兩點A、B,使得曲線y=f(x)在點A、B處的切線互相垂直,則實數(shù)a的取值范圍為( 。
A.$[-\frac{1}{2},\frac{1}{2}]$B.$[-\sqrt{2},\sqrt{2}]$C.$(-∞,-\sqrt{2})∪(\sqrt{2},+∞)$D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為得到函數(shù)y=sin2x-cos2x的圖象,可由函數(shù)y=$\sqrt{2}$sin2x的圖象( 。
A.向左平移$\frac{π}{8}$個單位B.向右平移$\frac{π}{8}$個單位
C.向左平移$\frac{π}{4}$個單位D.向右平移$\frac{π}{4}$個單位

查看答案和解析>>

同步練習(xí)冊答案