已知不等式組
x2-4x+3<0
x2+2x-8>0
的解集是A,且存在x0∈A,使得不等式x2-ax+4>0成立.
(Ⅰ)求集合A;
(Ⅱ)求實(shí)數(shù)a的取值范圍.
考點(diǎn):一元二次不等式的解法
專(zhuān)題:不等式的解法及應(yīng)用
分析:(Ⅰ)解一元二次不等式求出不等式組的解,即得到集合A;
(Ⅱ)構(gòu)造函數(shù)f(x)=x2-ax+4,求出其最大值,令最大值大于0,求出a 的范圍即可.
解答: 解:(Ⅰ)
x2-4x+3<0
x2+2x-8>0
解得
1<x<3
x<-4或x>2

∴A={x|2<x<3},
(Ⅱ)令f(x)=x2-ax+4,
由題意得x∈A時(shí),f(x)max>0,
①當(dāng)
a
2
≥2.5
即a≥5時(shí),f(x)max=f(2)=8-2a>0,
∴a<4(舍去);
②當(dāng)
a
2
<2.5
即a<5時(shí),f(x)min=f(3)=13-3a>0,
a<
13
3
,
總之,實(shí)數(shù)a的取值范圍是:a<
13
3
點(diǎn)評(píng):本題考查一元二次不等式的解法;考查 二次函數(shù)最值的求法;考查轉(zhuǎn)化的思想,屬于一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若cos(α-
π
6
)=
4
5
,則sin(2α+
π
6
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公園的摩天輪觀覽車(chē)主架示意圖如圖所示,其中O為輪軸中心,距地面32m(即OM長(zhǎng)),巨輪半徑為30m,AM=BP=2m,巨輪逆時(shí)針旋轉(zhuǎn)且12分鐘轉(zhuǎn)動(dòng)一圈.若點(diǎn)M為P的初始位置(O,A,M共線(xiàn)),經(jīng)過(guò)t分鐘,該吊艙P(yáng)距地面的高度為h(t),則h(t)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n是兩條不同的直線(xiàn),α,β,γ是三個(gè)不同的平面,則下列為真命題的是( 。
A、若α⊥β,m⊥α,則m∥β
B、若α⊥γ,β⊥γ,則α∥β
C、若m⊥α,n∥m,則n⊥α
D、若m∥α,n∥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}中,若an+1=an+an+2(n∈N*),則稱(chēng)數(shù)列{an}為“凸數(shù)列”,已知數(shù)列{bn}為“凸數(shù)列”,且b1=1,b2=-2,則數(shù)列{bn}的前2014項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=a-bcos3x(b>0)的最大值為
3
2
,最小值為-
1
2
,
(Ⅰ)求函數(shù)y=-4asin(3bx)的周期、最大值,并求取得最大值時(shí)的x之值;
(Ⅱ)求函數(shù)y=sin(3bx+
π
6
)
單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

光線(xiàn)從點(diǎn)A(-3,5)射到x軸上,經(jīng)反射以后經(jīng)過(guò)點(diǎn)B(2,10),則光線(xiàn)從A到B的距離為( 。
A、5
2
B、2
5
C、5
10
D、10
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)據(jù)80,81,82,83的方差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的不等式(mx-1)(x-2)<0的解為2<x<
1
m
,則m的取值范圍是( 。
A、m<
1
2
B、m>0
C、0<m<
1
2
D、0<m<2

查看答案和解析>>

同步練習(xí)冊(cè)答案