設(shè)數(shù)列{an}中,若an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”,已知數(shù)列{bn}為“凸數(shù)列”,且b1=1,b2=-2,則數(shù)列{bn}的前2014項(xiàng)和為
 
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由“凸數(shù)列”的定義,可知,b1=1,b2=-2,b3=-3,b4=-1,b5=2,b6=3,b7=1,b8=-2,…,可得數(shù)列{bn}是周期為6的周期數(shù)列,即可得出.
解答: 解:由“凸數(shù)列”的定義,可知,b1=1,b2=-2,b3=-3,b4=-1,b5=2,b6=3,b7=1,b8=-2,…,
故數(shù)列{bn}是周期為6的周期數(shù)列,
又b1+b2+b3+b4+b5+b6=0,
故數(shù)列{bn}的前2014項(xiàng)和S2014=b1+b2+b3+b4=1-2-3-1=-5.
點(diǎn)評:本題考查了數(shù)列的周期性、數(shù)列求和,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,1,0),B(1,2,1),C(0,0,2),則原點(diǎn)O到平面ABC的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)欲制定一項(xiàng)新的制度,學(xué)生會為此進(jìn)行了問卷調(diào)查,所有參與問卷調(diào)查的人中,持有“支持”、“不支持”和“既不支持也不反對”的人數(shù)如下表所示:
支持既不支持也不反對不支持
高一學(xué)生800450200
高二學(xué)生100150300
(Ⅰ)在所有參與問卷調(diào)查的人中,用分層抽樣的方法抽取n個人,已知從“支持”的人中抽取了45人,求n的值;
(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取5人,從這5人中任意選取2人,求至少有1人是高一學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

C
3
7
+
A
3
6
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=e|x|+|x|,若關(guān)于x的方程f(x)=k有兩個不同的實(shí)根,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
x2-4x+3<0
x2+2x-8>0
的解集是A,且存在x0∈A,使得不等式x2-ax+4>0成立.
(Ⅰ)求集合A;
(Ⅱ)求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(0,1),點(diǎn)B在曲線C1:y=ex-1上,若線段AB與曲線C2:y=
1
x
相交且交點(diǎn)恰為線段AB的中點(diǎn),則稱點(diǎn)B為曲線C1與曲線C2的一個“相關(guān)點(diǎn)”,記曲線C1與曲線C2的“相關(guān)點(diǎn)”的個數(shù)為n,則(  )
A、n=0B、n=1
C、n=2D、n>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)對任意兩個不相等的實(shí)數(shù)a,b,總有
f(a)-f(b)
a-b
>0成立,則必有( 。
A、函數(shù)f(x)是先增加后減少
B、f(x)在R上是增函數(shù)
C、函數(shù)f(x)是先減少后增加
D、f(x)在R上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>b>0,則下列不等式成立的是( 。
A、a>b>
a+b
2
ab
B、a>
ab
a+b
2
>b
C、a>
a+b
2
>b>
ab
D、a>
a+b
2
ab
>b

查看答案和解析>>

同步練習(xí)冊答案