11.若拋物線x2=12y上一點(diǎn)(x0,y0)到焦點(diǎn)的距離是該點(diǎn)到x軸距離的4倍,則y0的值為( 。
A.1B.$\sqrt{2}$C.2D.$\frac{1}{2}$

分析 利用拋物線的定義與性質(zhì),轉(zhuǎn)化列出方程求解即可.

解答 解:拋物線x2=24y上一點(diǎn)(x0,y0),到焦點(diǎn)的距離是該點(diǎn)到x軸距離的4倍,
可得y0+$\frac{p}{2}$=4y0,所以y0=$\frac{p}{6}$=$\frac{24}{2}$×$\frac{1}{6}$=2.
故選:C.

點(diǎn)評 本題考查拋物線的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.三棱錐P-ABC的三條側(cè)棱兩兩垂直,且PA=PB=PC=1,則其外接球上的點(diǎn)到平面ABC的距離的最大值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若如圖框圖所給的程序運(yùn)行結(jié)果為S=41,圖中的判斷框①中是i>a,則實(shí)數(shù)a的取值范圍是( 。
A.(5,6]B.[5,6)C.(6,7]D.[6,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知$csinA=\sqrt{3}acosC$,則C=$\frac{π}{3}$;若$c=\sqrt{31}$,△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,則a+b=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow$|=3,|$\overrightarrow{a}$|=2|$\overrightarrow-\overrightarrow{a}$|,若|$\overrightarrow{a}$+λ$\overrightarrow$|≥3恒成立,則實(shí)數(shù)λ的取值范圍為(-∞,-3]∪[$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)向量$\overrightarrow{BA}$=(3,2),$\overrightarrow{BC}$=(3,-4),$\overrightarrow{AD}$=(0,2),則( 。
A.$\overrightarrow{AB}∥\overrightarrow{BC}$B.$\overrightarrow{AB}∥\overrightarrow{AD}$C.$\overrightarrow{BC}∥\overrightarrow{AC}$D.$\overrightarrow{AC}∥\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.從1,2,3,4,5這五個(gè)數(shù)字中選出三個(gè)不相同數(shù)組成一個(gè)三位數(shù),則奇數(shù)位上必須是奇數(shù)的三位數(shù)個(gè)數(shù)為( 。
A.12B.18C.24D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.右邊程序框圖的算法思路源于數(shù)學(xué)名著《幾何原本》中的“輾轉(zhuǎn)
相除法”,執(zhí)行該程序框圖(圖中“mMODn”表示m除以n的余
數(shù)),若輸入的m,n分別為495,135,則輸出的m=45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.P(x,y)是曲線$\left\{\begin{array}{l}x=-2+cosθ\\ y=sinθ\end{array}$(0≤θ<π,θ是參數(shù))上的動(dòng)點(diǎn),則$\frac{y}{x}$的取值范圍是( 。
A.[-$\frac{\sqrt{3}}{3}$,0]B.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]C.[0,$\frac{\sqrt{3}}{3}$]D.(-∞,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

同步練習(xí)冊答案