【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程=bx+a;(其中,,,,);
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤=銷售收入-成本)
【答案】(1);(2)當(dāng)單價(jià)定為8.25元時(shí),工廠可獲得最大利潤
【解析】
(1)先求,再根據(jù)所給數(shù)據(jù)分別求出即可(2)寫出利潤函數(shù),利用二次函數(shù)求最值即可.
(1)由平均數(shù)公式得
= (x1+x2+x3+x4+x5+x6)=8.5,= (y1+y2+y3+y4+y5+y6)=80.
=-20
所以a=-b=80+20×8.5=250,從而回歸直線方程為=-20x+250.
(2)設(shè)工廠獲得的利潤為L元,依題意得
L=x(-20x+250)-4(-20x+250)=-20x2+330x-1 000=-20+361.25.
當(dāng)且僅當(dāng)x=8.25時(shí),L取得最大值.
故當(dāng)單價(jià)定為8.25元時(shí),工廠可獲得最大利潤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動支付(又稱手機(jī)支付)越來越普遍,某學(xué)校興趣小組為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有個(gè)人,把這個(gè)人按照年齡分成5組:第1組,第2組,第3組,第4組,第5組,然后繪制成如圖所示的頻率分布直方圖,其中,第一組的頻數(shù)為20.
(1)求和的值,并根據(jù)頻率分布直方圖估計(jì)這組數(shù)據(jù)的眾數(shù);
(2)從第1,3,4組中用分層抽樣的方法抽取6人,求第1,3,4組抽取的人數(shù);
(3)在(2)抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來自同一個(gè)組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知S2=4,an+1=2Sn+1,n∈N* .
(1)求通項(xiàng)公式an;
(2)求數(shù)列{|an﹣n﹣2|}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有某高新技術(shù)企業(yè)年研發(fā)費(fèi)用投入(百萬元)與企業(yè)年利潤(百萬元)之間具有線性相關(guān)關(guān)系,近5年的年科研費(fèi)用和年利潤具體數(shù)據(jù)如下表:
年科研費(fèi)用(百萬元) | 1 | 2 | 3 | 4 | 5 |
企業(yè)所獲利潤(百萬元) | 2 | 3 | 4 | 4 | 7 |
(1)畫出散點(diǎn)圖;
(2)求對的回歸直線方程;
(3)如果該企業(yè)某年研發(fā)費(fèi)用投入8百萬元,預(yù)測該企業(yè)獲得年利潤為多少?
參考公式:用最小二乘法求回歸方程的系數(shù)計(jì)算公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知橢圓兩個(gè)焦點(diǎn)的坐標(biāo)分別是, ,并且經(jīng)過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2) 已知是橢圓的左頂點(diǎn),斜率為的直線交橢圓于, 兩點(diǎn),
點(diǎn)在上, , ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,若函數(shù)的最小正周期為,且在上單調(diào)遞減.
(1)求的解析式;
(2)若關(guān)于的方程在有實(shí)數(shù)解,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com