A. | $\frac{2016}{4033}$ | B. | -$\frac{4032}{4031}$ | C. | $\frac{2016}{4031}$ | D. | -$\frac{2016}{4031}$ |
分析 設(shè)等差數(shù)列{an}的公差為d,由S2=-1,S5=5,可得2a1+d=-1,5a1+$\frac{5×4}{2}$d=5,解得a1,d,可得$\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}$=$\frac{1}{(2n-3)(2n-1)}$=$\frac{1}{2}(\frac{1}{2n-3}-\frac{1}{2n-1})$.利用“裂項求和”方法即可得出.
解答 解:設(shè)等差數(shù)列{an}的公差為d,∵S2=-1,S5=5,
∴2a1+d=-1,5a1+$\frac{5×4}{2}$d=5,
解得a1=-1,d=1,
∴an=-1+(n-1)=n-2.
∴$\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}$=$\frac{1}{(2n-3)(2n-1)}$=$\frac{1}{2}(\frac{1}{2n-3}-\frac{1}{2n-1})$.
則數(shù)列{$\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}$}的前2016項的和=$\frac{1}{2}[(-1-1)+(1-\frac{1}{3})$+…+$(\frac{1}{2×2016-3}-\frac{1}{2×2016-1})]$
=$\frac{1}{2}(-1-\frac{1}{4031})$
=-$\frac{2016}{4031}$.
故選:D.
點評 本題考查了等差數(shù)列的通項公式與求和公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | ±3 | C. | $\sqrt{3}$ | D. | $±\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{a}$<$\frac{1}$ | B. | a2>ab | C. | $\frac{1}{{a{b^2}}}$>$\frac{1}{{{a^2}b}}$ | D. | a2>b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{2π}{3}$,0) | B. | ($\frac{2π}{3}$,0) | C. | ($\frac{π}{12}$,0) | D. | (-$\frac{π}{6}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2) | B. | [-2,0) | C. | (-2,0) | D. | (0,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com