2.已知直線l:kx+y-3=0與圓x2+y2=3交于兩點(diǎn)A,B且△OAB為等邊三角形(O為坐標(biāo)原點(diǎn)),則k=( 。
A.3B.±3C.$\sqrt{3}$D.$±\sqrt{3}$

分析 由題意,圓心到直線的距離d=$\frac{3}{\sqrt{{k}^{2}+1}}$=$\frac{\sqrt{3}}{2}×\sqrt{3}$,即可求出k的值.

解答 解:由題意,圓心到直線的距離d=$\frac{3}{\sqrt{{k}^{2}+1}}$=$\frac{\sqrt{3}}{2}×\sqrt{3}$,
∴k=±$\sqrt{3}$.
故選D.

點(diǎn)評 本題考查直線與圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若集合A={-1,0,1,2},B={x|x+1>0},則A∩B={0,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若集合A={x|y=lg(2x+3)},B={-2,-1,1,3},則A∩B等于(  )
A.{3}B.{-1,3}C.{-1,1,3}D.{-1,-1,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.向邊長分別為5,5,6的三角形區(qū)域內(nèi)隨機(jī)投一點(diǎn)M,則該點(diǎn)M與三角形三個頂點(diǎn)距離都大于1的概率為1-$\frac{π}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知直線l1:2x-y+1=0,直線l2與l1關(guān)于直線y=-x對稱,則直線l2的方程為( 。
A.x-2y+1=0B.x+2y+1=0C.x-2y-1=0D.x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知點(diǎn)A(3,2,0),B(2,-1,2),點(diǎn)M在x軸上,且到A,B兩點(diǎn)距離相等,則點(diǎn)M的坐標(biāo)為(2,0,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓心為C的圓經(jīng)過O(0,0))和A(4,0)兩點(diǎn),線段OA的垂直平分線和圓C交于M,N兩點(diǎn),且|MN|=2$\sqrt{5}$
(1)求圓C的方程
(2)設(shè)點(diǎn)P在圓C上,試問使△POA的面積等于2的點(diǎn)P共有幾個?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-2x,g(x)=$\frac{1}{2}a{x^2}$.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)設(shè)函數(shù)h(x)=f(x)-g(x),若函數(shù)h(x)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等差數(shù)列{an}的前n項(xiàng)和Sn滿足S2=-1,S5=5,則數(shù)列{$\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}$}的前2016項(xiàng)的和為( 。
A.$\frac{2016}{4033}$B.-$\frac{4032}{4031}$C.$\frac{2016}{4031}$D.-$\frac{2016}{4031}$

查看答案和解析>>

同步練習(xí)冊答案