設數列{an}的前n項和為Sn,且滿足Sn=2-an,n=1,2,3,….
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足b1=1,且bn+1=bn+an,求數列{bn}的通項公式;
(3)設cn=n (3-bn),求數列{cn}的前n項和為Tn.
【答案】
分析:(1)利用數列中a
n與 Sn關系
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/0.png)
解決.
(2)結合(1)所求得出b
n+1-b
n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/1.png)
.利用累加法求b
n(3)由上求出c
n=n (3-b
n)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/2.png)
,利用錯位相消法求和即可.
解答:解:(1)因為n=1時,a
1+S
1=a
1+a
1=2,所以a
1=1.
因為S
n=2-a
n,即a
n+S
n=2,所以a
n+1+S
n+1=2.
兩式相減:a
n+1-a
n+S
n+1-S
n=0,即a
n+1-a
n+a
n+1=0,故有2a
n+1=a
n.
因為a
n≠0,所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/3.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/4.png)
( n∈N
*).
所以數列{a
n}是首項a
1=1,公比為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/5.png)
的等比數列,a
n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/6.png)
( n∈N
*).
(2)因為b
n+1=b
n+a
n( n=1,2,3,…),所以b
n+1-b
n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/7.png)
.從而有b
2-b
1=1,b
3-b
2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/8.png)
,b
4-b
3=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/9.png)
,…,b
n-b
n-1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/10.png)
( n=2,3,…).
將這n-1個等式相加,得b
n-b
1=1+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/11.png)
+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/12.png)
+…+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/13.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/14.png)
=2-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/15.png)
.
又因為b
1=1,所以b
n=3-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/16.png)
( n=1,2,3,…).
(3)因為c
n=n (3-b
n)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/17.png)
,
所以T
n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/18.png)
. ①
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/19.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/20.png)
. ②
①-②,得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/21.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/22.png)
-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/23.png)
.
故T
n=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/24.png)
-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/25.png)
=8-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/26.png)
-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/27.png)
=8-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/28.png)
( n=1,2,3,…).
點評:本題考查利用數列中a
n與 Sn關系
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190324012978096/SYS201310241903240129780018_DA/29.png)
求數列通項,累加法、錯位相消法求和,考查轉化、變形構造、計算能力.