【題目】若二次函數(shù)的圖象和直線無(wú)交點(diǎn),現(xiàn)有下列結(jié)論:

①方程一定沒(méi)有實(shí)數(shù)根;②若,則不等式對(duì)一切實(shí)數(shù)都成立;

③若,則必存在實(shí)數(shù),使;④若,則不等式對(duì)一切實(shí)數(shù)都成立;⑤函數(shù)的圖象與直線也一定沒(méi)有交點(diǎn),其中正確的結(jié)論是__________.(寫(xiě)出所有正確結(jié)論的編號(hào))

【答案】①②④⑤

【解析】因?yàn)楹瘮?shù)f(x)的圖象與直線y=x沒(méi)有交點(diǎn),所以f(x)>x(a>0)或f(x)<x(a<0)恒成立.
因?yàn)閒[f(x)]>f(x)>x或f[f(x)]<f(x)<x恒成立,所以f[f(x)]=x沒(méi)有實(shí)數(shù)根;
正確;
若a>0,則不等式f[f(x)]>f(x)>x對(duì)一切實(shí)數(shù)x都成立;故正確;
若a<0,則不等式f[f(x)]<x對(duì)一切實(shí)數(shù)x都成立,所以不存在x0,使f[f(x0)]>x0;
錯(cuò)誤;
a+b+c=0,則f(1)=0<1,可得a<0,因此不等式f[f(x)]<x對(duì)一切實(shí)數(shù)x都成立;
正確;
易見(jiàn)函數(shù)g(x)=f(-x),與f(x)的圖象關(guān)于y軸對(duì)稱(chēng),所以g(x)和直線y=-x也一定沒(méi)有交點(diǎn).故正確;
故答案為:①②④⑤

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2|x|﹣3a
(1)當(dāng)a=1時(shí),在所給坐標(biāo)系中,畫(huà)出函數(shù)f(x)的圖象,并求f(x)的單調(diào)遞增區(qū)間
(2)若直線y=1與函數(shù)f(x)的圖象有4個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2-6x+8<0},B={x|(xa)(x-3a)<0}.

(1)若xAxB的充分條件,求a的取值范圍;

(2)若AB,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,有下列5個(gè)命題:

①若,則的圖象自身關(guān)于直線軸對(duì)稱(chēng);

的圖象關(guān)于直線對(duì)稱(chēng);

③函數(shù)的圖象關(guān)于軸對(duì)稱(chēng);

為奇函數(shù),且圖象關(guān)于直線對(duì)稱(chēng),則周期為2;

為偶函數(shù), 為奇函數(shù),且,則周期為2.

其中正確命題的序號(hào)是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)镽的函數(shù)
(1)用定義證明:f(x)為R上的奇函數(shù);
(2)用定義證明:f(x)在R上為減函數(shù);
(3)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),若對(duì)于在定義域內(nèi)存在實(shí)數(shù)滿(mǎn)足,則稱(chēng)函數(shù)為“局部奇函數(shù)”.若函數(shù)是定義在上的“局部奇函數(shù)”,則實(shí)數(shù)的取值范圍是( 。

A. [1﹣,1+ B. [﹣1,2] C. [﹣2,2] D. [﹣2,1﹣]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程的三個(gè)實(shí)根分別為一個(gè)橢圓,一個(gè)拋物線,一個(gè)雙曲線的離心率,則的取值范圍(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x3﹣12x在區(qū)間[﹣4,4]上的最小值是(
A.﹣9
B.﹣16
C.﹣12
D.﹣11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣2|.
(1)作出函數(shù)f(x)=x|x﹣2|的大致圖象;
(2)若方程f(x)﹣k=0有三個(gè)解,求實(shí)數(shù)k的取值范圍.
(3)若x∈(0,m](m>0),求函數(shù)y=f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案