【題目】已知定義域?yàn)镽的函數(shù) .
(1)用定義證明:f(x)為R上的奇函數(shù);
(2)用定義證明:f(x)在R上為減函數(shù);
(3)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范圍.
【答案】
(1)證明:∵ ,
∴f(﹣x)= = =﹣ =﹣f(x),
∴f(x)為R上的奇函數(shù)
(2)解:∵ =﹣1+ ,
令x1<x2,則 < ,
∴f(x1)﹣f(x2)= ﹣ = >0,
∴f(x1)>f(x2),
∴f(x)在R上為減函數(shù)
(3)解:∵f(t2﹣2t)+f(2t2﹣k)<0,f(x)為R上的奇函數(shù),
∴f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),又f(x)在R上為減函數(shù),
∴t2﹣2t>k﹣2t2恒成立,
∴k<(3t2﹣2t)min,由二次函數(shù)的單調(diào)性質(zhì)知,當(dāng)t= 時(shí),y=(3t2﹣2t)min,取得最小值,即(3t2﹣2t)min,=3×( )2﹣2× =﹣ .
∴
【解析】(1)因?yàn)閒(﹣x)= = =﹣ =﹣f(x),利用奇函數(shù)的定義即可證明f(x)為R上的奇函數(shù);(2)令x1<x2 , 則 < ,將f(x1)與f(x2)作差,利用函數(shù)單調(diào)性的定義可證明:f(x)在R上為減函數(shù);(3)由(1)(2)可知奇函數(shù)f(x)在R上為減函數(shù),故f(t2﹣2t)+f(2t2﹣k)<0恒成立t2﹣2t>k﹣2t2恒成立,即k<(3t2﹣2t)min , 利用二次函數(shù)的單調(diào)性質(zhì)可求得(3t2﹣2t)min , 從而可求k的取值范圍.
【考點(diǎn)精析】本題主要考查了奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)點(diǎn),需要掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣2ax2+3x(x∈R).
(1)若a=1,點(diǎn)P為曲線y=f(x)上的一個(gè)動(dòng)點(diǎn),求以點(diǎn)P為切點(diǎn)的切線斜率取最小值時(shí)的切線方程;
(2)若函數(shù)y=f(x)在(0,+∞)上為單調(diào)增函數(shù),試求滿足條件的最大整數(shù)a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
(1)命題“若 ,則tanα=1”的逆否命題為假命題;
(2)命題p:x∈R,sinx≤1.則¬p:x0∈R,使sinx0>1;
(3)“ ”是“函數(shù)y=sin(2x+)為偶函數(shù)”的充要條件;
(4)命題p:“x0∈R,使 ”;命題q:“若sinα>sinβ,則α>β”,那么(¬p)∧q為真命題.
其中正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn , 且 (λ為常數(shù)).令cn=b2n , (n∈N*),求數(shù)列{cn}的前n項(xiàng)和Rn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)的圖象和直線無交點(diǎn),現(xiàn)有下列結(jié)論:
①方程一定沒有實(shí)數(shù)根;②若,則不等式對(duì)一切實(shí)數(shù)都成立;
③若,則必存在實(shí)數(shù),使;④若,則不等式對(duì)一切實(shí)數(shù)都成立;⑤函數(shù)的圖象與直線也一定沒有交點(diǎn),其中正確的結(jié)論是__________.(寫出所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是等比數(shù)列,且a2013+a2015= dx,則a2014(a2012+2a2014+a2016)的值為( )
A.π2
B.2π
C.π
D.4π2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)用定義證明函數(shù)f(x)在(﹣∞,+∞)上為減函數(shù);
(2)若x∈[1,2],求函數(shù)f(x)的值域;
(3)若g(x)= ,且當(dāng)x∈[1,2]時(shí)g(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (b≠0且b是常數(shù)).
(1)如果方程f(x)=x有唯一解,求b值.
(2)在(1)的條件下,求證:f(x)在(﹣∞,﹣1)上是增函數(shù);
(3)若函數(shù)f(x)在(1,+∞)上是減函數(shù),求負(fù)數(shù)b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com