【題目】已知點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),直線的斜率與直線的斜率乘積為.

(1)求橢圓的方程;

(2)不經(jīng)過點(diǎn)的直線)與橢圓交于,兩點(diǎn),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為(與點(diǎn)不重合),直線,軸分別交于兩點(diǎn),,求證:.

【答案】(Ⅰ)(Ⅱ)見解析

【解析】

(Ⅰ)根據(jù)橢圓的中點(diǎn)弦所在直線的斜率的性質(zhì),得到,得到,再結(jié)合橢圓所過的點(diǎn)的坐標(biāo)滿足橢圓方程,聯(lián)立方程組,求得,進(jìn)而求得橢圓的方程;

(Ⅱ)將直線方程與橢圓方程聯(lián)立,消元,利用韋達(dá)定理得到兩根和與兩根積,將證明結(jié)果轉(zhuǎn)化為證明直線,的斜率互為相反數(shù),列式,可證.

(Ⅰ)由題意,,

聯(lián)立①①解得

所以,橢圓的方程為.

(Ⅱ)設(shè),,,,

所以,,

又因?yàn)?/span>,所以,,

,,

解法一:要證明,可轉(zhuǎn)化為證明直線,的斜率互為相反數(shù),只需證明,即證明.

,∴.

解法二:要證明,可轉(zhuǎn)化為證明直線軸交點(diǎn)、連線中點(diǎn)的縱坐標(biāo)為,垂直平分即可.

直線的方程分別為

,,

分別令,,

,同解法一,可得

,垂直平分.

所以,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,過的直線交橢圓、兩點(diǎn),若的最大值為5,則b的值為( )

A. 1 B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|ax2+2x+1=0,aR},

1)若A只有一個(gè)元素,試求a的值,并求出這個(gè)元素;

2)若A是空集,求a的取值范圍;

3)若A中至多有一個(gè)元素,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】項(xiàng)過關(guān)游戲的規(guī)則規(guī)定:在第n關(guān)要拋一枚骰子n次,如果這n次拋擲所出現(xiàn)的點(diǎn)數(shù)之和大于,則算過關(guān).那么,連過前3關(guān)的概率為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廣州亞運(yùn)會(huì)紀(jì)念章委托某專營店銷售,每枚進(jìn)價(jià)5元,同時(shí)每銷售一枚這種紀(jì)念章需向廣州亞組委交特許經(jīng)營管理費(fèi)2元,預(yù)計(jì)這種紀(jì)念章以每枚20元的價(jià)格銷售時(shí)該店一年可銷售2000枚,經(jīng)過市場調(diào)研發(fā)現(xiàn)每枚紀(jì)念章的銷售價(jià)格在每枚20元的基礎(chǔ)上每減少一元?jiǎng)t增加銷售400枚,而每增加一元?jiǎng)t減少銷售100枚,現(xiàn)設(shè)每枚紀(jì)念章的銷售價(jià)格為.()

1)寫出該專營店一年內(nèi)銷售這種紀(jì)念章所獲利潤()與每枚紀(jì)念章的銷售價(jià)格()的函數(shù)關(guān)系式(并寫出這個(gè)函數(shù)的定義域)

2)當(dāng)每枚紀(jì)念章銷售價(jià)格為多少元時(shí),該特許專營店一年內(nèi)利潤()最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+(y-1)2=5,直線lmxy+1-m=0(mR).

(1)判斷直線l與圓C的位置關(guān)系;

(2)設(shè)直線l與圓C交于A,B兩點(diǎn),若直線l的傾斜角為120°,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì),某5家鮮花店今年4月的銷售額和利潤額資料如下表:

鮮花店名稱

A

B

C

D

E

銷售額x(千元)

3

5

6

7

9

利潤額y(千元)

2

3

3

4

5

1)用最小二乘法計(jì)算利潤額y關(guān)于銷售額x的回歸直線方程=x+;

2)如果某家鮮花店的銷售額為8千元時(shí),利用(1)的結(jié)論估計(jì)這家鮮花店的利潤額是多少.

參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)值公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,橢圓上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線 與橢圓交于兩點(diǎn),點(diǎn)(0,1),且=,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.

(1)求圓的方程;

(2)若圓與直線交于,兩點(diǎn),且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案