精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的焦距為,橢圓上任意一點到橢圓兩個焦點的距離之和為6.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線 與橢圓交于兩點,點(0,1),且=,求直線的方程.

【答案】(1) ;(2) .

【解析】試題分析:(Ⅰ)由橢圓上任意一點到橢圓兩個焦點的距離之和為可得,由的焦距為,可得,再由的關系可得,進而得到橢圓方程;(II)直線代入橢圓方程,運用韋達定理和判別式大于,再由中點坐標公式和兩直線垂直的條件,可得的方程,解方程可得,從而可得直線方程.

試題解析:(Ⅰ)由已知,,解得,,

所以

所以橢圓C的方程為。

(Ⅱ)由,

直線與橢圓有兩個不同的交點,所以解得。

設A(,),B(,

,,

計算,

所以,A,B中點坐標E(,),

因為=,所以PE⊥AB,,

所以, 解得,

經檢驗,符合題意,所以直線的方程為.

【方法點晴】本題主要考查待定系數求橢圓方程以及直線與橢圓的位置關系,屬于難題.用待定系數法求橢圓方程的一般步驟;①作判斷:根據條件判斷橢圓的焦點在軸上,還是在軸上,還是兩個坐標軸都有可能;②設方程:根據上述判斷設方程 ;③找關系:根據已知條件,建立關于、、的方程組;④得方程:解方程組,將解代入所設方程,即為所求.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】 為實數,且,

(I)求方程的解;

(II)若滿足,求證:①;

(III)在(2)的條件下,求證:由關系式所得到的關于的方程存在,使

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某創(chuàng)業(yè)團隊擬生產兩種產品,根據市場預測,產品的利潤與投資額成正比(如圖1),產品的利潤與投資額的算術平方根成正比(如圖2).(注: 利潤與投資額的單位均為萬元)

(注:利潤與投資額的單位均為萬元)

(1)分別將兩種產品的利潤、表示為投資額的函數;

(2)該團隊已籌集到10 萬元資金,并打算全部投入兩種產品的生產,問:當產品的投資額為多少萬元時,生產兩種產品能獲得最大利潤,最大利潤為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣

(1)若a>0,試判斷f(x)在定義域內的單調性;

(2)若f(x)在[1,e]上的最小值為,求實數a的值;

(3)若f(x)<x2在(1,+∞)上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數,如果存在實數m,n(m<n),使得f(x)的定義域和值域分別是[m,n]和[3m,3n],則m+n=_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,F1、F2分別是雙曲線 =1(a>0,b>0)的兩個焦點,以坐標原點O為圓心,|OF1|為半徑的圓與該雙曲線左支交于A、B兩點,若△F2AB是等邊三角形,則雙曲線的離心率為 (

A.
B.2
C. ﹣1
D.1+

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.

(1)求證:AA1⊥平面ABC;

(2)求二面角A1-BC1-B1的余弦值;

(3)求點C到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)解不等式;

(2)若函數,其中為奇函數,為偶函數,若不等式對任意恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某海濱浴場海浪的高度y()是時間t(0≤t≤24,單位:時)的函數,記作:.下表是某日各時的浪高數據.

t()

0

3

6

9

12

15

18

21

24

y()

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

(1)根據以上數據,求函數yf(t)的函數表達式;

(2)依據規(guī)定,當海浪高度高于1米時才對沖浪愛好者開放,請依據(1)的結論,判斷一天內的上午8:00時至晚上20:00時之間,有多少時間可供沖浪者進行運動?

查看答案和解析>>

同步練習冊答案